最近半年来,我有幸跟着我们系的一位老师一起学习,我跟着老师一起做的其中一个主题是关于哥德巴赫猜想的研究。哥德巴赫猜想是数论中存在最久的未解问题之一。用现代的数学语言,哥德巴赫猜想可以陈述为:
“任一大于2的偶数,都可表示成两个素数之和。”
-- Wikipedia
关于是否表述为大于2的偶数,还是大于4的偶数,又或者是大于6的偶数,网上流传了很多版本,我们暂以维基上的表述为准。
我通过有序列表大致叙述一下我跟着老师的这段时间里发生了什么吧:
0. 刚开始跟老师做这方面学习的时候,我也很惊讶,因为在这之前完全没有想过会走这样一条路,偏向研究类型的一条路,可是还是觉得老师给我的感觉很好,能让自己真正地学习到更多的知识,最重要的是,老师愿意带着我一起学习。于是就开始了学习的路程。
1. 一开始接触,老师就约了我和另外一名同学一起出来,大概为我们讲解了什么是哥德巴赫猜想,素数,RSA,费氏数列,以及老师在这方面的已有的研究成果。实际上,老师之前在这方面已经有相当高的成就了,比如老师对哥德巴赫猜想的研究已经可以和陈景润当年的研究相提并论了,某些方面甚至做得更加好。比如陈景润1973年提出的陈氏定理(1+2),所谓“陈氏定理”的“1+2”结果,通俗地讲,是指:对于任给一个大偶数N,那么总可以找到奇素数p',p''或p1,p2,p3,使得下列两式至少有一个成立:
N=p'+p'' ①
N=p1+p2*p3 ②
而老师已经可以做到1+1,即证明:对于任给一个偶数N,那么总可以找到奇素数p',p'',使得①成立。
2. 学习过程中,由于老师的想法是让每个人都有学习的侧重点,我的主力在哥德巴赫猜想这一块,另外一个同学就研究其他的内容,所以老师还给过很多关于哥猜的资料给我看,几乎都是国内外知名的论文,一般我都会先看看,然后反馈我的看法给老师,老师会为我讲解其中的难点和关键性技术。我与老师一周有3-5次的见面时间,一般都会讨论一下近期做的事情成果,说一下我当前的进展,再说说后续需要做些什么东西。整条主线是由老师来把控的,然后我主要解决一下我们讨论出来的一些问题,实际上是一起解决的,我怎么能凭借一己之力完成那么复杂的任务呢!好吧,实话说,真正做起来并没有很难,只要一步步老老实实做就好了,会借助工具帮自己解决问题。我在这方面可能会有一点优势在,就是我是计算机专业的,我可以用电脑自己写个小程序解决一些复杂的计算问题,事实证明这在我的研究中起着很大的作用。
3. 学习中就不断发现了一些之前没有人提出过的关于哥德巴赫猜想的新特性,于是就继续针对新发现的内容进行研究。在边研究的同时,老师也准备写论文让国外的这块领域的专家评审一下我们的工作成果,看看我们做的东西是否真的有价值,毋庸置疑,这当然是有价值的。老师在半年前就投出去的稿件在最近得到了回复,结果是被录用了。这直接说明我们做的这方面的研究是有意义的,这也鼓励了我继续做下去。
4. 然后就是现在了,目前主要是在看一些素数、哥德巴赫猜想相关的一些书籍,多了解别人是怎么做这方面的研究的。
这篇文章主要是想简单地分享一下个人学习哥猜的主要经历,打算再写另外一篇详细一点的针对哥猜的研究,也分享一下一些研究成果。