二叉树的创建及各方法实现

数据结构中二叉树很重要,关于二叉树的操作包括二叉树的创建、遍历(先序、中序、后序、层序)、计算二叉树深度、显示结点数据、清空二叉树、计算叶子结点个数并输出等

一、二叉树的创建

        1.在已知二叉树前序遍历(二叉树的结构已知)的情况下,可以通过递归的方法创建二叉树。将二叉树变成扩展二叉树,即把叶子结点的孩子补成#,作为标记

                               


扩展之后


在输入的时候,需要输入:  ab#d##c#e##       (输入后,按enter键) 

程序如下:

#include<iostream>
using namespace std;

typedef struct node
{
	struct node *leftChild;
	struct node *rightChild;
	char data;
}BiTreeNode, *BiTree;

void createBiTree(BiTree &T)
{
	char c;
	cin >> c;
	if('#' == c)
		T = NULL;
	else
	{
		T = new BiTreeNode;
		T->data = c;
		createBiTree(T->leftChild);
		createBiTree(T->rightChild);
	}
}

int main()
{
	BiTree T;
	createBiTree(T);

	return 0;
}

参考:点击打开链接

2. 通过创建根结点、添加结点和左右子树的方法

程序如下:

定义变量和树结点

#define MAXLEN 20    //最大长度
typedef char DATA;    //定义元素类型
struct  CBTType                   //定义二叉树结点类型 
{
 DATA data;           //元素数据 
 CBTType * left;    //左子树结点指针 
 CBTType * right;   //右子树结点指针 
};
初始化二叉树:将一个结点设置为二叉树的根结点

CBTType * InitTree()
{
 CBTType * node;
 if(node = new CBTType)  //申请内存 
 {
  cout<<"请先输入一个根节点数据:"<<endl;
  cin>>node->data;
  node->left=NULL;
  node->right=NULL;
  if(node!=NULL)   //如果二叉树结点不为空 
  {
   return node;  
  } else
  {
   return NULL;
  }
 }
 return NULL;
}
查找结点:遍历二叉树中的每一个节点,逐个比较数据,当找到目标数据时将返回该数据所在结点的指针。

CBTType *TreeFindNode(CBTType *treeNode,DATA data)
{
 CBTType *ptr;
 if(treeNode==NULL)
 {
  return NULL;
 }else
 {
  if(treeNode->data==data)
  {
   return treeNode;
  }
  else        //分别向左右子树查找   
  {
   if(ptr=TreeFindNode(treeNode->left,data))  //左子树递归查找 
   {
    return ptr;
   }
   else if(ptr=TreeFindNode(treeNode->right,data))         //右子树递归查找 
   {
    return ptr;
   }
   else
   {
    return NULL;
   }
  }
 } 
} 

添加结点:在二叉树中添加结点数据,添加结点时除了要输入结点数据外,还需要指定其父结点,以及添加的结点作为左子树还是右子树。然后将该结点置为其父结点的左子树或者右子树。

void AddTreeNode(CBTType *treeNode)
{
 CBTType *pnode,*parent;
 DATA data;
 char menusel;
 if(pnode=new CBTType)     //分配内存 
 {
  cout<<"输入二叉树结点数据:"<<endl;
  cin>>pnode->data;
  pnode->left=NULL;     //设置左子树为空 
  pnode->right=NULL;     //设置左子树为空 
  cout<<"输入该结点的父结点数据"<<endl;
  cin>>data;
  parent=TreeFindNode(treeNode,data);//查找父结点,获得结点指针 
  if(!parent)
  {
   cout<<"没有找到父结点"<<endl;
   delete pnode;
   return ;
  }
  cout<<"1.添加该结点到左子树;2.添加该结点到右子树。请输入操作对应的数字。"<<endl;
  do
  {
   cin>>menusel;
   if(menusel=='1'||menusel=='2')
   {
    switch(menusel)
    {
     case '1':     //添加结点到左子树 
      if(parent->left)                 //左子树不为空
      {
       cout<<"左子树结点不为空"<<endl; 
      } 
      else
      {
       parent->left=pnode;
       cout<<"数据添加成功!"<<endl;
      }
      break;
     case '2':     //添加结点到右子树 
      if(parent->right)                 //右子树不为空
      {
       cout<<"右子树结点不为空"<<endl;
      } 
      else
      {
       parent->right=pnode;
       cout<<"数据添加成功!"<<endl; 
      } 
      break;
     default:
      cout<<"子节点选择error!"<<endl;
      break;
    } 
   }
  }while(menusel!='1'&&menusel!='2');
 }
} 


int main()
{
 CBTType *root=NULL;      //root为指向二叉树根结点的指针
 char menusel;
 //设置根结点
 root=InitTree();
 //添加结点
 do
 {
  cout<<"请选择菜单添加二叉树的结点:"<<endl;
  cout<<"0.退出;1.添加二叉树的结点。"<<endl;
  cin>>menusel;
  switch(menusel)
  {
   case '1':
    AddTreeNode(root);
    break;
   case '0':
    break;
   default:
    cout<<"添加结点error"<<endl;
    break;
  }
 }while(menusel!='0'); 
}
参考原网页:http://www.jb51.net/article/42068.htm


二. 二叉树的遍历
1.先序遍历

void DLRTree(CBTType *treeNode)
{
 if(treeNode)
 {
  ShowNodeData(treeNode);     //显示结点内容
  DLRTree(treeNode->left);    //显示左子树内容
  DLRTree(treeNode->right);    //显示右子树内容 
 }
} 
2. 中序遍历

void LDRTree(CBTType *treeNode)
{
 if(treeNode)
 {

  LDRTree(treeNode->left);    //显示左子树内容   
  ShowNodeData(treeNode);     //显示结点内容
  DLRTree(treeNode->right);    //显示右子树内容    
 } 
} 
3. 后续遍历

void LRDTree(CBTType *treeNode)
{
 if(treeNode)
 {
  LRDTree(treeNode->left);    //显示左子树内容 
  DLRTree(treeNode->right);    //显示右子树内容    
  ShowNodeData(treeNode);     //显示结点内容
 } 
} 
3. 层序遍历

void LevelTree(CBTType *treeNode)
{
 CBTType *p;
 CBTType *q[MAXLEN];       //定义一个队列 
 int head=0,tail=0;
 if(treeNode)        //如果队首指针不为空
 {
  tail=(tail+1)%MAXLEN;             //计算循环队列队尾序号
  q[tail]=treeNode;      //二叉树根指针进入队列 
  while(head!=tail)
  {
   head=(head+1)%MAXLEN;            //计算循环队列的队首序号
   p=q[head];      //获取队首元素
   ShowNodeData(p);     //输出队首元素
   if(p->left!=NULL)     //如果存在左子树
   {
    tail=(tail+1)%MAXLEN;           //计算队列的队尾序号
    q[tail]=p->left;    //左子树入队 
   }
   if(p->right!=NULL)     //如果存在右子树
   {
    tail=(tail+1)%MAXLEN;           //计算队列的队尾序号
    q[tail]=p->right;    //右子树入队 
   } 
  } 
 } 
} 


三、计算二叉树的深度

int Depth(BiTree T)   //求二叉树的深度
{
int dep=0,depl,depr;
if(!T) dep=0;
  else
  {
   depl=Depth(T->lchild);
   depr=Depth(T->rchild);
   dep=1+(depl>depr?depl:depr);
  }
return dep;
}

四、显示结点数据

void ShowNodeData(CBTType *treeNode)
{
 cout<<treeNode->data<<"\t";     //直接输出结点数据 
} 

五、清空二叉树

void ClearTree(CBTType *treeNode)
{
 if(treeNode)        //判断当前树不为空 
 {
  ClearTree(treeNode->left);            //清空左子树
  ClearTree(treeNode->right);            //清空右子树
  delete treeNode;      //释放当前结点所占用的内存 
 }
} 


六、计算叶子结点并输出

int Sumleaf(BiTree T)
{                         //求叶子节点的个数
	int sum=0,m,n;
	if(T)
	{
		if((!T->lchild)&&(!T->rchild))
		{
			sum++;
			printf("%c ",T->data);
		}
		m=Sumleaf(T->lchild);
		sum+=m;
		n=Sumleaf(T->rchild);
		sum+=n;
	}
	return sum;
} 

参考网址:http://blog.163.com/almerzhimin@126/blog/static/15525631020103112347782/

以上内容总结转摘自以下博文或网页,感谢作者的贡献

http://www.jb51.net/article/42068.htm
http://blog.csdn.net/stpeace/article/details/8138303

http://blog.163.com/almerzhimin@126/blog/static/15525631020103112347782/















评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值