题目描述:
把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个递增排序的数组的一个旋转,输出旋转数组的最小元素。例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。
解题思路:
1.暴力解法,遍历一遍就能找到最小的值,复杂度为O(n),但是没有l利用数组的特点
2.二分查找。这里的数组算是两个有序的数组,二分查找对有序数组非常有效,复杂度为O(lgn)。
分析:
1.先分析数组的特点,这两个有序的数组,前一个数组的所有值都大于等于后一个数组的值,最小值应该出现在后一个数组的第一个元素。
2.二分查找缩小查找范围依赖于中间值和待查找值的比较。
设置两个指针,index1指向第一个元素,index2指向最后一个元素。 如果中间midIndex指向的元素大于index2指向的元素,那么,最小的元素一定在midIndex之后。如果midIndex指向的元素小于index1指向的元素,那么最小元素一定在midIndex之后。
就是利用这种判断来不断缩小查找范围。
3.结束条件:
最终index1会指向前一个数组的最后一个元素,index2会指向后一个数组的第一个元素,两者之间的distance为1.而index2指向的就是最小的元素。
4.特殊情况:
如果被旋转的个数为0,也就是只有一个升序的数组,这时候没有必要去查找,因为第一个元素就是最小的元素。
还有在查找中经常遇到的一种情况,就是有相同元素的情况。
比如 {1, 0, 1, 1, 1} 是{0, 1, 1, 1, 1}的一个旋转
index1、index2、midIndex指向的元素值都为1,这时候不能判断最小值所在的范围,所以需要顺序遍历。
虽然思路比较简单,但我感觉写代码的时候还是有一些技巧的
package com.java.offer;
public class ReverseMin {
public static int min(int[] numbers, int length) throws Exception {
if (numbers == null || length <= 0) {
throw new Exception("Invalid parameters");
}
int index1 = 0;
int index2 = length - 1;
// 初始化为index1是为了判断旋转个数为0的情况
int midIndex = index1;
while (numbers[index1] >= numbers[index2]) {
if (index2 - index1 == 1) {
midIndex = index2;
break;
}
midIndex = (index1 + index2) / 2;
//如果三个值都相等,就无法判断在那个区间
if (numbers[index1] == numbers[midIndex]
&& numbers[midIndex] == numbers[index2]) {
return minInOrder(numbers, index1, index2);
}
if (numbers[midIndex] >= numbers[index1]) {
index1 = midIndex;
} else if (numbers[midIndex] < numbers[index2]) {
index2 = midIndex;
}
}
//不能返回number[index2],也是考虑到旋转个数为0的情况
return numbers[midIndex];
}
private static int minInOrder(int[] numbers, int index1, int index2) {
int result = numbers[index1];
for (int i = index1 + 1; i <= index2; i++) {
if (result > numbers[i]) {
result = numbers[i];
}
}
return result;
}
public static void main(String[] args) {
int[] a = {3, 4, 5, 1, 1, 2};
int[] b = {1, 0, 1, 1, 1};
int[] c = {};
try {
System.out.println(min(a, a.length));
System.out.println(min(b, b.length));
System.out.println(min(c, c.length));
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}