Leetcode NO.74 Search a 2D Matrix

本题要求如下:

Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:

  • Integers in each row are sorted from left to right.
  • The first integer of each row is greater than the last integer of the previous row.

For example,

Consider the following matrix:

[
  [1,   3,  5,  7],
  [10, 11, 16, 20],
  [23, 30, 34, 50]
]

Given target = 3, return true.

本题最开始秒想出一种O(mn)的算法,就是把matrix完全展开,就是一个sorted array,然后用binary search,提交之后一次通过了,不过一看这是medium题,感觉怪怪的。。。于是又想了一会儿,想出一种O(log(m)+log(n))的方法。思路也是比较简单,但是处理边界条件花了我一点时间。

直接上代码:

class Solution {
public:
    bool searchMatrix(vector<vector<int> > &matrix, int target) {
    	int m = matrix.size();
    	int n = matrix[0].size();

    	int row = -1;
        int low = 0;
        int high = m - 1;
        int mid = 0;
       
        while (low <= high) {
        	mid = (high + low) / 2;
        	if (matrix[mid][0] == target)
        		return true;
        	else if (matrix[mid][0] > target)
        		high = mid - 1;
        	else {
        		if (matrix[mid][n-1] >= target) {
        			row = mid;
        			break;
        		}
        		else
        			low = mid + 1;
        	}
        }
        if (row == -1)
        	return false;

        low = 1;
        high = n - 1;
        while (low <= high) {
        	mid = (low + high) / 2;
        	if (matrix[row][mid] == target)
        		return true;
        	else if (matrix[row][mid] > target)
        		high = mid - 1;
        	else
        		low = mid + 1;
        }
        return false;
    }
};


算法解释:

本题用了两次binary search:

1,第一次复杂一点,需要处理边界条件,如果matrix[mid][0]比target小的话,不能单纯的直接low = mid + 1,因为即使这样target也可能在mid这一行,所以需要检查matrix[mid][n-1]是否大于target,如果大于target,则返回这一行为row,否则按binary search的通常步骤处理

2,如果第一次binary search中没有找到target > matrix[mid][0], target < matrix[mid][n-1]的那行,即该target < matrix[0][0]或者 > matrix[m-1][n-1],无论是哪种可能,在循环中都不会对row赋值,这种情况就直接判定为false

3,第二次在确定的行内搜索就是普通的binary search

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值