- 博客(12)
- 收藏
- 关注
原创 新闻分类大赛task5
深度学习的文本分类TextCNNimport loggingimport randomimport numpy as npimport torchlogging.basicConfig(level=logging.INFO, format='%(asctime)-15s %(levelname)s: %(message)s')# set seed seed = 666random.seed(seed)np.random.seed(seed)torch.cuda.manual_see
2020-07-31 22:02:04
129
原创 新闻分类大赛task4
构造数据在fasttext中,标签使用__label__X的形式表示,text label存为csv。train_df = pd.read_csv(rtrain_set.csv",sep='\t', nrows=15000)train_df['label_ft'] = '__label__' + train_df['label'].astype(str)train_df[['text','label_ft']].iloc[:-5000].to_csv('train.csv', index=None,
2020-07-27 22:44:05
146
原创 新闻分类大赛task3
文本表示方法采用词袋模型进行文本表示,使用sklearn中CountVectorizer函数from sklearn.feature_extraction.text import TfidfVectorizercorpus = [ 'This is the first document.', 'This is the second second document.', 'And the third one.', 'Is this the first document?'
2020-07-25 23:07:27
106
原创 新闻分类大赛task2
文本长度昨天错误以为文本格式为list,,直接使用len()函数对text进行长度计算。今天才发现就是普通文本格式“3 24 53”,需要使用split函数进行切分求长度。20万条新闻数据,平均长度为987,最长57921,最短为2,长度分布不太均匀。初步判断为长文本分类。类别分布利用pandas数据透视,分析每个Label数据量。table = pd.pivot_table(train_df,index=['label'],aggfunc='count')print(table).
2020-07-22 23:52:07
112
原创 新闻分类大赛赛题分析
@新闻分类大赛赛题分析本文对天池新闻文本分类比赛进行赛题分析。1 数据格式训练集为csv格式文件,使用pandas读取前十行,结果如图。import pandas as pdtrain_df = pd.read_csv(r'train_set.csv', sep='\t')print(len(train_df))print(train_df.head(10))训练集一共20万条数据。数据集中标签label的对应的关系如下:{‘科技’: 0, ‘股票’: 1, ‘体育’: 2, ‘娱乐’
2020-07-21 17:40:17
237
原创 动手学深度学习task4
机器翻译 与seq2seq由于机器翻译任务中输入输出都是不定长序列,我们可以使用编码器—解码器(encoder-decoder)或者seq2seq模型 。注意力机制attention模仿人类注意力,能让模型更关注数据的局部。...
2020-02-19 18:48:21
157
原创 动手学深度学习task3
过拟合、欠拟合及其解决方案欠拟合解决方案:添加其它的特征项添加多项式特征减少正则化参数过拟合解决方案:增加训练样本权值衰减dropout梯度消失、梯度爆炸梯度爆炸如果在连续乘法中出现一个非常大的值,计算出一个很大的梯度值,如果以这个梯度值进行更新,那么这次迭代的步长就很大,可能会一下子飞出了合理的区域。可以通过梯度裁剪的方法解决。梯度消失如果连续乘法中出现一个较小的值,...
2020-02-19 18:41:57
170
原创 动手学深度学习task2
动手学深度学习task2文本预处理主要为分词,在英文文本中一个空格隔开两个词语,在中文文本则需要使用分词技术,一般采用jieba分词,速度比较快,实际测试中thulac具有比较好的效果。-语言模型基于统计的语言模型,N元语法模型-循环神经网络基础...
2020-02-14 21:27:01
146
原创 动手学深度学习task1
动手学深度学习task1线性回归线性回归损失函数为:这里使用平方损失函数。softmaxsoftmax是将多个类别的概率归一化。训练中使用,而在预测中可以省略,直接取值最高者。...
2020-02-14 21:20:16
140
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人