Myslq百万级以下分页语句对比

阅读头条的时候看到这么几条语句,亲自实践了一下

笔者使用的数据量是458090行

数据库是Mysql 5.6 表是innodb类型

以下是查询语句和时间

1、[SQL]SELECT * FROM t_consume LIMIT 458000,10
受影响的行: 0
时间: 0.214s
type:ALL
possible_keys:null
key:null
row:457484


2、[SQL]SELECT * FROM t_consume ORDER BY id LIMIT 458000,10
受影响的行: 0
时间: 0.212s
type:index
possible_keys:null
key:primary key
row:457484


3、[SQL]SELECT * FROM t_consume WHERE id between 458000 and 458010
受影响的行: 0
时间: 0.001s
type:range
possible_keys:PRIMARY
key:PRIMARY
row:11
--------------

3.1、[SQL]SELECT * FROM t_consume WHERE id between 458000 and 4580010
受影响的行: 0
时间: 0.157s
--------------
4、[SQL]SELECT * FROM t_consume WHERE id in 
(458000,458001,458002,458003,458004,458005,458006,458007,458008,458009,458010)
受影响的行: 0
时间: 0.000s
type:range
possible_keys:PRIMARY
key:PRIMARY
row:11

可以看到利用between和in语句可以节省不少的时间,type类型为range>index>ALL

在其中有一个查询超出范围的语句3.1,查询时间比较多

在语句前面使用explain可以看到其它参数信息

MySQL是一款常用的关系型数据库管理系统,当数据量达到百万时,使用常规的分页查询方法可能会导致查询效率低下,因此需要一些优化建议。 1. 使用索引:在分页查询中,使用合适的索引可以大大提高查询速度。对于分页查询,需要对页码(如LIMIT中的offset)以及排序字段进行索引,以减小查询范围。 2. 建立分区:对于大数据量的表,可以根据某个字段对表进行分区,将数据分散存储在多个磁盘上,提高查询效率。 3. 避免全表扫描:尽量避免使用SELECT *,只选择需要的字段,减少数据传输量,优化查询性能。 4. 使用缓存:使用缓存技术,如Memcached或Redis等,在查询结果比较频繁且变化不大的情况下,可以将查询结果缓存起来,减少数据库的压力。 5. 分批查询:可以将大的查询结果分批获取,每次查询一部分数据,实现逐步加载,减少数据库的负载。 6. 合理使用内存:增大MySQL的缓冲池大小,尽量将数据存储在内存中,减少磁盘IO,提高查询性能。 7. 优化查询语句:合理编写查询语句,避免复杂的JOIN、子查询等操作,可以考虑优化查询语句的写法,减少不必要的计算和查询。 8. 使用查询缓存:对于一些经常被查询的数据,可以开启查询缓存功能,将查询结果缓存起来,提高查询性能。 总之,对于百万数据量的分页查询,需要综合考虑以上建议,并根据具体情况进行优化,合理地使用索引、缓存等技术,以提高查询效率和系统性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值