【记忆化搜索】POJ-1141 Brackets Sequence

本文介绍了一种使用记忆化搜索解决括号匹配问题的方法,通过递归与记忆化减少重复计算,提高了解决效率。同时,文章还详细阐述了如何利用pos[][]数组记录最优分界点来优化打印解的过程。

上次用自底向上递推的姿势Copy-Study了这道题的题解。但是还有一个个人觉得更容易接受的姿势——记忆化搜索。

思路:递归+记忆化

记忆存在:return d[i][j]

递归边界1:i > j——此时不需要添加括号,return 0

递归边界2:i == j——此时是单个的,只需添加一个括号即可匹配,return 1

初始化ans = ∞

匹配:内部需要添加的括号为可能的解

暴搜:枚举 i~j 之间的k,找到最小的dfs(i, k) + dfs(k+1, j)

vis[i][j] = true

return d[i][j] = ans

而对于打印解,依然靠pos[ ][ ]数组记录最优分界点。

代码如下:

/****************************************/
 #include <cstdio>
 #include <cstdlib>
 #include <cstring>
 #include <algorithm>
 #include <cmath>
 #include <stack>
 #include <queue>
 #include <vector>
 #include <map>
 #include <string>
 #include <iostream>
 using namespace std;
/****************************************/
const int N = 105, SUP = 2e9;
int d[N][N], pos[N][N];
bool vis[N][N];
char s[N];

int dfs(int i, int j)
{
	if(vis[i][j])
		return d[i][j];
	if(i > j)
		return 0;
	if(i == j)
		return 1;
	int ans = SUP;
	if((s[i] == '(' && s[j] == ')') || (s[i] == '[' && s[j] == ']')) {
		ans = min(ans, dfs(i+1, j-1));
		pos[i][j] = -1;
	}
	for(int k = i; k < j; k++) {
		int u = dfs(i, k) + dfs(k+1, j);
		if(ans > u) {
			ans = u;
			pos[i][j] = k;
		}
	}
	vis[i][j] = true;
	return d[i][j] = ans;
}

void PR(int l, int r)
{
	if(l > r)	return ;
	if(l == r) {
		if(s[l] == '(' || s[l] == ')')
			printf("()");
		else
			printf("[]");
	}
	else {
		if(pos[l][r] == -1) {
			putchar(s[l]);
			PR(l+1, r-1);
			putchar(s[r]);
		}
		else {
			PR(l, pos[l][r]);
			PR(pos[l][r]+1, r);
		}
	}
}

int main()
{
	memset(vis, 0, sizeof(vis));
	scanf("%s", s);
	int len = strlen(s);
	dfs(0, len-1);
	PR(0, len-1);
	putchar('\n');
	return 0;
}


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值