首先我们定义一种Lucky number:最高位为1的数字(10进制)。
接下来,会给你n个区间,[Li,Ri]
随机从每一个区间内取出1个整数。
问取出的这n个数中至少有K%是Lucky number的概率是多少。
一个整数n,表示区间的个数 (1<=n<=1000)
接下来n行,每一行两个整数Li,Ri表示区间[Li,Ri],并且保证(1<=Li<=Ri<=10^18)
最后一行是一个整数k (0<=k<=100)
Original | Transformed |
2 1 1 2 50 2 1 2 9 11 50
Original | Transformed |
0.500000 0.833333
————————————————————————————————————————————————————————
题意:给出n个区间。设'1'开头的数字为幸运数字。从n个区间中取出n个数字。问取出的数字至少有k%是幸运数字的概率。
思路:本来只是一个简单DP,我却调了N久。
警示1:整数的n次方,再也不要用自带的pow()函数。自己写!心情好还能写个快速幂。因为自带的pow()函数是double类型的,精度损失非常大
警示2:区间右端点减去区间左端点,左端点要先减去1。防止左端点被减掉。
警示3:一定要根据dp数组的状态描述仔细地进行初始化。
设dp[i][j]表示前i个区间选到了j个幸运数字的概率。
那么dp[0][0] = 1(0个区间一定是0个幸运数字)
设每个区间选择到幸运数字的概率是v[i]
状态转移方程为:
dp[i][j] = dp[i-1][j-1] * v[] + dp[i-1][j] * (1-v[])
要么是第i个区间选择到了幸运数字,要么是前i-1个区间已经选够了j个幸运数字。
由此我们需要初始化dp[i][0]。因为1个幸运数字都没有选到,所以一路乘即可。
得到至少k%个幸运数字其实就是n * k%想上取整而已。设至少p个。之后把dp[][p] + dp[][p+1] + ... + dp[][n]即可。
现在剩下的问题是预处理区间内幸运数字的个数。这样就可以尽快查询到。(10^18很大啊)。
0~9:1个
10~99:10个
100~999:100个
......
取出左右端点将它们“剪裁”成上述片段即可。这里有用到前缀和。
代码如下:
/**
* ID: j.sure.1
* PROG:
* LANG: C++
*/
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <climits>
#include <iostream>
#define For(i, x, y) for(int i=x; i<y; i++)
#define For_(i, x, y) for(int i=x; i>=y; i--)
#define Mem(f, x) memset(f, x, sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Pri(x) printf("%d\n", x)
#define LL long long
using namespace std;
const int INF = 0x3f3f3f3f;
/****************************************/
const int N = 1111;
LL table[20];
double val[N], dp[N][N];
int n, k;
LL power(int i, int k)
{
LL j = 1;
while(k--) {
j *= i;
}
return j;
}
void get_table()
{
for(LL i=0,k=10; i<18; i++) {
table[i] = power(k, i);
table[i] += i ? table[i-1] : 0;
}
}
LL get_num(LL x)
{
char s[25];
sprintf(s, "%lld", x);
int len = strlen(s);
if(len == 1) {
return x ? 1 : 0;
}
if(s[0] == '1') {
return x - power(10, len-1) + 1 + table[len-2];
}
else {
return table[len-1];
}
}
int main()
{
#ifdef J_Sure
freopen("000.in", "r", stdin);
freopen("999.out", "w", stdout);
#endif
int T;
get_table();
Sca(T);
while(T--) {
Sca(n);
LL x, y;
For(i, 0, n) {
scanf("%lld%lld", &x, &y);
//the number of Lucky Number in [x, y]
val[i] = get_num(y) - get_num(x-1);
//the probability being Lucky Number
val[i] /= y - x + 1;
}
Sca(k);
Mem(dp, 0);
dp[0][0] = 1;
For(i, 1, n+1) {
dp[i][0] = dp[i-1][0] * (1-val[i-1]);
}
//j Lucky Number have been selected of the first i intervals
//dp[i][j] = dp[i-1][j-1] * val[i] + dp[i-1][j] * (1-val[i]);
For(i, 1, n+1) {
For(j, 1, i+1) {
dp[i][j] += dp[i-1][j-1] * val[i-1] + dp[i-1][j] * (1-val[i-1]);
}
}
double ans = 0;
k = ceil(1.0*k/100.0*n);
For(j, k, n+1) {
ans += dp[n][j];
}
printf("%.6f\n", ans);
}
return 0;
}