Dima and Trap Graph ------codeforces #214 div.2

http://codeforces.com/contest/366


本题就是求一条路径,使得该路径上所有区间的公共子区间最大,输出最大值。

直接枚举该区间,再用DFS去判断使用这个区间的时候能不能从1节点走到n节点。

对于区间的左端点直接暴力枚举,枚举每一个出现过的左端点,对于右端点,采用二分枚举就可以了。


#include <cstdlib>
#include <iostream>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define inf 2147480000
int n,m;
int v[10001];
int next[10001];
int head[10001];
int r[10001];
int l[10001];
int o;
int box[3001];
int maxn;
bool pig[1001];
bool dfs(int a,int l1,int r1)
{
    if(a==n) return true;
    if(l1>r1) return false;
    for(int p=head[a];p>0;p=next[p])
    {
        if(!pig[v[p]])
        {
            if(l[p]<=l1 && r[p]>=r1)
            {
                pig[v[p]]=1;
                if(dfs(v[p],l1,r1))
                    return true;
            }
        }
    }
    return false;
}
int main(int argc, char *argv[])
{
    cin>>n>>m;
    for(int i=1;i<=m;i++)
    {
        int a,b,c,d;
        cin>>a>>b>>c>>d;
        o++;v[o]=b;next[o]=head[a];head[a]=o;l[o]=c;r[o]=d;
        o++;v[o]=a;next[o]=head[b];head[b]=o;l[o]=c;r[o]=d;
        box[i]=c;
        maxn=max(maxn,d);
    }
    sort(box+1,box+1+m);
    int now=-1;
    int best=-1;
    for(int i=1;i<=m;i++)
    {
        if(now!=box[i])
        {
            now=box[i];
            int final=-1;
            int ll=now;int rr=maxn;
            while(ll<=rr)
            {
                int mid=(ll+rr)/2;
                memset(pig,0,sizeof(pig));
                pig[1]=1;
                if(dfs(1,now,mid))
                    {final=mid;ll=mid+1;}
                else
                    rr=mid-1;
            }
            if(final>=now)
                best=max(best,final-now+1);
        }
    }
    if(best!=-1)
        cout<<best<<endl;
    else cout<<"Nice work, Dima!"<<endl;
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值