BNU29140 Taikotaiko(概率)

BNU29140——Taiko taiko——————【概率题、规律题】

Taiko taiko

Time Limit: 1000ms
Memory Limit: 65536KB
64-bit integer IO format:  %lld      Java class name: Main
Type: 
None
 
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •                   
  • 拆拆超级喜欢太鼓达人(赛后大家可自行百度规则),玩久了也对积分规则产生了兴趣,理论上连击数越多,分数增加的越快,而且还配合着击打准确度有相应的计算规则,拆拆觉得这些规则太复杂了,于是把规则自行简化了下:

    对于一段击打序列,我们假设Y为打中,N为未打中 (没有良可之分了)

    我们视连续的n次击中为n连击  相应的分数为 1+2+3+。。。+n

    例如序列YNNYYYNYN的总分数为1+1+2+3+1=8

    当然 击中是有概率的 我们假定概率始终为P(0<=P<=1)拆拆的击中概率很高的恩恩=w=

    于是现在拆拆想知道对于长度为L的序列  击中概率为P时 获得积分的期望是多少

     

    Input

    一个整数T(表示T组数据)

    接下来的T组数据

    接下来T行 每行一个整数L 一个浮点数P

    数据范围

    1<=T<=1000

    1<=L<=1000

    0<=P<=1

     

    Output

    对于每组数据输出一行1个6位小数 即题目描述的期望

     

    Sample Input

    2
    2 0.9
    3 0.5
    

    Sample Output

    2.610000
    2.125000
    

    思路:应小妹的要求 讲清楚不装b

    1 1*p+0*0.1(Y N)

    2 3*p*p+1*p(1-p)+1*(1-p)*p+0(YY YN NY NN)== P^2+2*p

    #include<iostream>
    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    using namespace std;
    double dp[1005];
    int main()
    {
        int t;
        scanf("%d",&t);
        while(t--)
        {
            int n;
            double p;
            scanf("%d%lf",&n,&p);
    //        printf("%lf%d")
            memset(dp,0,sizeof(dp));
    
            dp[1]=1.0*p;
    
            for(int i=2;i<=n;i++)
            dp[i]=(dp[i-1]+i)*p;
    
            printf("%.6lf\n",dp[n]);
        }
    }



    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值