1. 前言
从2020年10月开始,基于亚马孙云科技 Graviton2 的缓存实例逐步推出,客户可以在使用 Amazon ElastiCache for Redis上使用这些实例。
Graviton2 处理器由 Amazon Web Services 使用 64 位 ARM Neoverse 内核定制,对第一代亚马逊云科技 Graviton 处理器进行了多种性能优化。这包括 7 倍的性能、4 倍的计算核心数量、每个内核 2 倍的私有内存、5 倍的内存速度和每个核心 2 倍的浮点性能。此外,Graviton2 处理器还具有全天候运行的全加密 DDR4 内存功能,且每核加密性能提高 50%。这些性能提升使得装备了Graviton2 的实例成为缓存工作负载的上佳之选。
本文将向您展示Graviton2 R6g 缓存实例(测试实例类型cache.r6g,后续简称r6g或R6g)对R5缓存实例(cache.r5,后续简称r5或R5)的性能增强以及迁移到Graviton2 R6g 缓存实例的方法流程。
通过测试我们可以清楚地看到,无论是何种工作负载和并发条件,R6g实例比之同等资源配置的R5实例性能均有显著的提升,而且每小时单价却有下降,在这双重因素的叠加之下,选择新一代的r6g实例,具有更好的性能和性价比。
2. 环境准备
2.1 环境信息
测试客户端(新加坡区域,AZ3)
表格:测试客户端配置
测试服务端(新加坡区域,主用在AZ3)
表格:测试服务端配置
ElastiCache for Redis选择默认参数,开启了集群模式(Cluster),数据用3个分片(每个分片1主2从,合计9个节点,为了系统的高可用和管理需要,默认参数会设置25%的内存作为预留内存,所以读者在自己做性能测试时要留意别把内存耗光导致结果失真,这也是我们没有选择最低配置的实例做测试的原因之一)。
部署完毕后的集群地址:
表格:测试的集群终端节点
我们把测试客户端和集群的主节点人工强行放到了同一个AZ以获取更直接的对比效果,同时选用的ElastiCache for Redis集群实例(3*3的2xlarge构建的集群)和测试客户端(8xlarge的EC2)均支持10G的带宽模式,读者在自己做测试时也要避免因网络带宽不足导致的测试结果失真。
可能很多读者会问,为什么测试的时候只选择这一个机型?细心的读者可能会发现,亚马逊云的机型是有一定规律的,例如4xlarge的配置刚好是2xlarge的两倍,而8xlarge的又刚好是4xlarge的两倍(以此类推,具体机型定义请参看网页链接:
https://docs.aws.amazon.com/zh_cn/AWSEC2/latest/UserGuide/instance-types.html)
所以此处我们用r5.2xlarge和r6g.2xlarge做个具有代表性的对比测试,就不用其他机型一一对比了。
2.2压测工具
此处我们使用两个不同的压测工具做针对性测试,一个是Redis自带的简单易用的redis-benchmark,一个是Redis Labs开源提供的在更高并发的场景使用的memtier_benchmark。
2.2.1 redis-benchmark
redis-benchmark默认含在redis的分发里面,直接安装redis即可获得,在Amazon Linux 2操作系统上使用如下命令即可(这个安装在客户端上,后续迁移的时候也会用到这个客户端源)。
amazon-linux-extras install redis4.0 -y
其命令的常用参数选项如下:
表格:redis-benchmark的常用参数
2.2.2 memtier_benchmark
memtier_benchmark需要使用github上的源码进行编译才能使用,在Amazon Linux 2操作系统上可以使用如下方式:
yum install gcc git autoconf automake gcc-c++openssl-devel libevent-devel -y
mkdir /opt/memtier_benchmark
cd /opt/memtier_benchmark
git clone https://github.com/RedisLabs/memtier_benchmark.git
cd memtier_benchmark
autoreconf -ivf
./configure
make && make install
其命令的常用参数选项如下:
表格:memtier_benchmark的常用参数
3. 测试过程
3.1 只读测试
注意:只读测试,我们只演示测试redis-benchmark工具。
测试R5.2xlarge机型的只读测试命令如下(压测200万次,并发1000,随机key和value,大小1k,不使用管道)
1redis-benchmark -n 2000000 -c 1000 -t get -d 1024 -p 6379 -h r5-2xlarge-elasticache-for-redis-cluster-endpoint --csv
测试R6g.2xlarge机型的只读测试命令如下(压测200万次,并发1000,随机key和value,大小1k,不使用管道)
1redis-benchmark -n 2000000 -c 1000 -t get -d 1024 -p 6379 -h r6g-2xlarge-elasticache-for-redis-cluster-endpoint --csv
结果如下(此处截图仅供参考,不参与后面的性能统计):
图例:对实例进行只读测试
3.2只写测试
注意:只写测试,我们只演示测试redis-benchmark工具。
测试R5.2xlarge机型的只写测试命令如下(压测200万次,并发1000,随机key和value,大小1k,不使用管道)
1redis-benchmark -n 2000000 -c 1000 -t set,hset -d 1024 -p 6379 -h r5-2xlarge-elasticache-for-redis-cluster-endpoint --csv
测试R6g.2xlarge机型的只写测试命令如下(压测200万次,并发1000,随机key和value,大小1k,不使用管道)
1redis-benchmark -n 2000000 -c 1000 -t set,hset -d 1024 -p 6379 -h r6g-2xlarge-elasticache-for-redis-cluster-endpoint --csv
结果如下(此处截图仅供参考,不参与后面的性能统计):
图例:对实例进行只写测试
3.3混合测试
3.3.1通过redis-benchmark测试
此处我们设定四个场景,分别是如下两种并发和键值(key/value)大小的组合:
500并发,1k大小和4k大小;
1000并发,1k大小和4k大小;
如下为对应的测试命令(包括常用的命令SET和GET,以及在实际业务中比较常用的HSET)。
测试场景1-1:500并发,1k大小,200万次请求
1redis-benchmark -n 2000000 -c 500 -t set,get,hset -d 1024 -p 6379 -h r5-2xlarge-elasticache-for-redis-cluster-endpoint --csv
和
1redis-benchmark -n 2000000 -c 500 -t set,get,hset -d 1024 -p 6379 -h r6g-2xlarge-elasticache-for-redis-cluster-endpoint --csv
测试场景1-2:500并发,4k大小,200万次请求
1redis-benchmark -n 2000000 -c 500 -t set,get,hset -d 4096 -p 6379 -h r5-2xlarge-elasticache-for-redis-cluster-endpoint --csv
和
1redis-benchmark -n 2000000 -c 500 -t set,get,hset -d 4096 -p 6379 -h r6g-2xlarge-elasticache-for-redis-cluster-endpoint --csv
测试场景1-3:1000并发,1k大小,200万次请求
1redis-benchmark -n 2000000 -c 1000 -t set,get,hset -d 1024 -p 6379 -h r5-2xlarge-elasticache-for-redis-cluster-endpoint --csv
和
1redis-benchmark -n 2000000 -c 1000 -t set,get,hset -d 1024 -p 6379 -h r6g-2xlarge-elasticache-for-redis-cluster-endpoint --csv
测试场景1-4:1000并发,4k大小,200万次请求
1redis-benchmark -n 2000000 -c 1000 -t set,get,hset -d 4096 -p 6379 -h r5-2xlarge-elasticache-for-redis-cluster-endpoint --csv
和
1redis-benchmark -n 2000000 -c 1000 -t set,get,hset -d 4096 -p 6379 -h r6g-2xlarge-elasticache-for-redis-cluster-endpoint --csv
每种场景测试5次以上,然后取如下图所示的SET、GET和HSET的值并计算均值作为结果(因为redis-benchmark的单进程特性,在并发和模拟实际客户端场景层面难以完全覆盖,我们测试发现请求数在约10万/秒左右即达到上限,即使修改并发和数据大小也无法突破,所以这部分留给读者自己去做操作和测试验证,本文测试数据收集不考虑此工具,防止数据出现偏差)。
图例:对实例进行混合测试(SET/GET/HSET)
3.3.2通过memtier_benchmark测试
此处我们同样设定四个场景,为如下条件的组合:
随机测试:分别测试500和1000并发,键值1k到4k大小随机,测试时间180秒,SET和GET的比例为1:4;
正态分布(高斯分布)测试:分别测试500和1000并发,键值1k到4k大小随机,测试时间180秒,SET和GET的比例为1:4;
我们没有设置更高的并发或更大的键值测试,因为在测试的过程中,我们发现系统运行比较稳定,调高并发或键值会导致本文的测试客户端m5.8xlarge的带宽使用率直接打满10G(如果要测试集群的极限,建议采用多客户端的分布式测试方式,本文暂不涉及),我们的测试命令只包括SET和GET,且为了更好的模拟实际生产环境中的读写比例,所以此处读写比例设置为1:4(模拟20%写)。
测试场景2-1:随机测试,500并发,键值1k-4k随机大小,测试时间180秒,SET和GET比例为1:4
1memtier_benchmark -R --data-size-range=1024-4096 --data-size-pattern=S --test-time 180 -t 10 -c 50 --cluster-mode --ratio=1:4 -p 6379 -s r5-2xlarge-elasticache-for-redis-cluster-endpoint
和
1memtier_benchmark -R --data-size-range=1024-4096 --data-size-pattern=S --test-time 180 -t 10 -c 50 --cluster-mode --ratio=1:4 -p 6379 -s r6g-2xlarge-elasticache-for-redis-cluster-endpoint
测试场景2-2:随机测试,1000并发,键值1k-4k随机大小,测试时间180秒,SET和GET比例为1:4
1memtier_benchmark -R --data-size-range=1024-4096 --data-size-pattern=S --test-time 180 -t 20 -c 50 --cluster-mode --ratio=1:4 -p 6379 -s r5-2xlarge-elasticache-for-redis-cluster-endpoint
和
1memtier_benchmark -R --data-size-range=1024-4096 --data-size-pattern=S --test-time 180 -t 20 -c 50 --cluster-mode --ratio=1:4 -p 6379 -s r6g-2xlarge-elasticache-for-redis-cluster-endpoint
测试场景2-3:正态分布(高斯分布)测试,500并发,键值1k-4k随机大小,测试时间180秒,SET和GET比例为1:4
1memtier_benchmark -R --data-size-range=1024-4096 --data-size-pattern=S --test-time 180 -t 10 -c 50 --cluster-mode --key-pattern=G:G -p 6379 -s r5-2xlarge-elasticache-for-redis-cluster-endpoint
和
1memtier_benchmark -R --data-size-range=1024-4096 --data-size-pattern=S --test-time 180 -t 10 -c 50 --cluster-mode --key-pattern=G:G -p 6379 -s r6g-2xlarge-elasticache-for-redis-cluster-endpoint
测试场景2-4:正态分布(高斯分布)测试,1000并发,键值1k-4k随机大小,测试时间180秒,SET和GET比例为1:4
1memtier_benchmark -R --data-size-range=1024-4096 --data-size-pattern=S --test-time 180 -t 20 -c 50 --cluster-mode --key-pattern=G:G -p 6379 -s r5-2xlarge-elasticache-for-redis-cluster-endpoint
和
1memtier_benchmark -R --data-size-range=1024-4096 --data-size-pattern=S --test-time 180 -t 20 -c 50 --cluster-mode --key-pattern=G:G -p 6379 -s r6g-2xlarge-elasticache-for-redis-cluster-endpoint
在测试过程中,我们发现系统运行非常稳定,所以每种场景测试了6次,然后取如下图所示的Sets、Gets和Waits的p99均值(其中1000并发我们没有取p99的均值,而是取了总体的均值,因为我们发现在R5机型的集群中,1000并发的情况下,p99均值的波动和方差太大,而R6g的机型没有这个问题,为了方便对比,就没有取并发1000的延时p99均值)。
图例:对实例进行混合测试(本文测试数据集来自此测试模式)
3.4监控
在测试的过程中,我们可以在CloudWatch控制台查看ElastiCache的Cluster端的对应数据,类似如下(主要防止因为资源耗尽的原因导致结果异常,如CPU,带宽等):
图例:CloudWatch的监控数据
在测试客户端,每一次使用memtier_benchmark测试都会输出对应的网络流量,记得别超过实例的最高值即可,否则请使用多个实例的分布式并发测试(例如想压测出ElastiCache for Redis的集群的性能极限)或者使用更高规格的实例(对应网络带宽会更大)。
4. 对比分析
针对之前的混合读写测试场景,我们针对memtier_benchmark工具的4个不同场景各做了6轮测试(每次重新开始测试前使用“flushdb/flushall”清理集群中的3个主分片,我们发现测试的结果非常的接近,表示服务器端运行稳定),获取到的原始数据如下:
表格:测试获取到的原始数据
4.1性能对比
注意:在计算比例时,以结果优的为基数(分母)。
4.1.1写入性能对比
在场景2-1中,r6g对比r5,其SET的每秒请求数提升了40%;
在场景2-2中,r6g对比r5,其SET的每秒请求数提升了37%;
在场景2-3中,r6g对比r5,其SET的每秒请求数提升了37%;
在场景2-4中,r6g对比r5,其SET的每秒请求数提升了34%。
对比结果如下图所示(数值越大越好):
图例:SET写入场景性能对比0
4.1.2读取性能对比
在场景2-1中,r6g对比r5,其GET的每秒请求数提升了40%;
在场景2-2中,r6g对比r5,其GET的每秒请求数提升了37%;
在场景2-3中,r6g对比r5,其GET的每秒请求数提升了37%;
在场景2-4中,r6g对比r5,其GET的每秒请求数提升了34%。
对比结果如下图所示(数值越大越好):
图例:GET读取场景性能对比
4.1.3响应延时对比
在场景2-1中,r6g对比r5,其p99(99%)的响应延时降低了36%;
在场景2-2中,r6g对比r5,其平均响应延时降低了37%;
在场景2-3中,r6g对比r5,其p99(99%)的响应延时降低了50%;
在场景2-4中,r6g对比r5,其平均响应延时降低了36%;
对比结果如下图所示(数值越小越好):
图例:请求延时对比
4.2性价比对比
我们从Amazon Web Services的官网列表价 查询到如下的ElastiCache for Redis实例每小时的价格(价格根据不同区域,不同时间会有差异,此处以2021-04-29的新加坡区域为例,最新和最终价格以官网页面为准):
Amazon Web Services也提供一个云上的成本计算器,针对上述两种机型,我给大家做了一个成本计算的例子供大家分享。
4.3结论
同样条件下的性能测试和延时,R6g机型(基于Graviton 第2代的ARM架构)均大幅领先原有基于通用CPU的R5机型。通过测试我们可以清楚地看到,无论是何种工作负载和并发条件,R6g实例比之同等资源配置的R5实例性能均有显著的提升,而每小时单价却有下降,因而R6g实例对客户来说,有更好的性价比。
综上所述,结合性能优势和价格优势,新发布的R6g机型将是客户在使用ElastiCache for Redis服务时的更优选择。
注意:当您按本文步骤进行测试的时候,随着环境,测试步骤的不同,可能需要对命令参数进行微调,测试结果也会有相应变化,但测试的思路以及测试结果变化的客观规律却是共通的。
5.实例的迁移
相对于ElastiCache for Redis管理服务,部分客户也喜欢自建Redis平台,但是相对平台服务而言,有如下比较明显的缺点和难题需要解决:
难以管理:管理服务器配置、软件补丁、安装、配置与备份
难以实现高可用:需要快速执行错误检测与修复
难以扩展:在线扩展可能引发错误,且需要监控副本性能
成本高昂:人员、流程、硬件与软件需要占用大量资金
除了前面章节对比测试的性能和延时,以及成本优势外,使用ElastiCache for Redis的管理服务还有如下优势可以让客户直接开箱即用:
极致性能:提供小于1ms的响应时间;当前最大支持500个节点,340TB存储的最大Redis集群;最大支持3250万连接数,满足极致场景的巅峰性能;
全托管:Amazon Web Services管理所有的硬件以及软件的配置和监控;
易伸缩:通过副本提供读操作的弹性伸缩,通过分片提供写操作非中断的弹性伸缩;支持横向和纵向的弹性伸缩;
可靠性保障:多可用区(免跨AZ流量费)支持,深度和详细的监控和告警,自动故障转移(10-20s内实现Fail Over);
安全和合规:通过Amazon VPC实现网络隔离和管理,符合HIPAA,PCI和FedRAMP等安全和合规要求,存储和传输中支持进行加密和身份认证;
兼容性:兼容多个Redis版本和客户端,支持导入导出,支持快照和恢复等;
5.1纯手工迁移
比较传统的方式是把运行在EC2(或者容器)里面的Redis数据做个备份导出(通过在reids-cli中使用阻塞式的save命令或者后台方式的bgsave命令),然后把导出文件存到S3(当前只支持从S3导入),然后在ElastiCache控制台创建集群时选择导入位于S3的备份文件,在这种操作方式下,如果源还在继续使用可能会导致两边的数据不完全同步,如果源不操作等新集群可用户再切换的话,则会有一定的服务中断时间。
具体操作见从备份还原的指引文档 ,本文不做额外的演示和说明。
5.2使用redis-migration-tool进行迁移
Redis-migration-tool是github上开源的一个Redis迁移工具,使用它可以在不同的Redis环境(如单机,集群等)实现同步和复制。
在Amazon Linux 2操作系统上可以使用如下方式使用redis-migration-tool:
1mkdir /opt/redis-migration-tool && cd /opt/redis-migration-tool
2
3git clone https://github.com/vipshop/redis-migrate-tool.git
因为这个工具有段时间没更新了,我们使用的是比较新的Redis 6.0.5版本,所以需要修改一下源码中关于RDB文件版本的定义。
修改“/opt/redis-migration-tool/redis-migrate-tool/src/rmt_redis.c”,把原来的“#define REDIS_RDB_VERSION 7”修改成“#define REDIS_RDB_VERSION 10”,然后再编译:
1cd /opt/redis-migration-tool/redis-migrate-tool
2
3autoreconf -fvi
4
5./configure
6
7make
8
9
10
11#编译好的文件位于src/redis-migrate-tool
接着编辑对应的配置文件“/opt/redis-migration-tool/redis-migrate-tool/rmt.conf”,内容如下(记得修改对应的集群endpoint):
1[source]
2
3type: single
4
5servers :
6
7- 127.0.0.1:6379
8
9
10
11[target]
12
13type: redis cluster
14
15servers:
16
17- r6g-2xlarge-elasticache-for-redis-cluster-endpoint:6379
18
19
20
21[common]
22
23listen: 0.0.0.0:8888
同时,我们此处使用之前的测试机(那个m5.8xlarge的EC2)的机器当做源,然后通过脚本往里面压数据,命令如下(模拟一个并发,一个客户端,持续180秒的写入随机数据):
1memtier_benchmark -R --data-size-range=1024-4096 --data-size-pattern=S --test-time 180 -t 1 -c 1 -p 6379 -s 127.0.0.1
5.2.1准备
原来在准备redis-benchmark工具的时候已经安装了redis服务,此处我们把服务启动,并确认数据内容,同时手工写入一个key做测试,如下:
1systemctl enable redis
2
3systemctl start redis
4
5
6
7redis-cli
8
9# keys *
10# set owner "WeiqiongChen"
源如下所示(没有其他数据,只有我们手工写入的key):
图例:准备位于EC2的源Redis(单机版)
目标如下所示(没有其他数据,也没有我们手工写入的key,因为还没开始同步):
图例:清理目标ElastiCache for Redis集群环境
5.2.1迁移和同步
在源通过如下命令开始生成数据
1memtier_benchmark -R --data-size-range=1024-4096 --data-size-pattern=S --test-time 180 -t 1 -c 1 -p 6379 -s 127.0.0.1
如下:
图例:启动源
然后再启动同步(特意晚启动同步模拟客户真实的迁移场景)
1cd /opt/redis-migration-tool/redis-migrate-tool
2
3./src/redis-migrate-tool -c ./rmt.conf -o log &
如下所示:
图例:启动源到目的的同步
5.2.1验证
我们统计源注入的数据量,如下(此处为473563个key):
图例:查看源的数据量
对比查看目标库同步的数据量(因为目标卡集群分成三个片了,所以要统计三个分片的总数),如下(此处合并总数依然是473563个key):
图例:查看目标的数据量
注意:读者们可以在源多做几轮测试,验证同步结果是否符合预期(如果没有数据同步或者有异常,可以查看redis-migration-tool目录的log文件查看异常信息)。
扩展阅读
《Amazon ElastiCache用户指南》:
https://docs.aws.amazon.com/zh_cn/AmazonElastiCache/latest/red-ug/GettingStarted.html
《Amazon ElastiCache 最佳实践》:
https://docs.aws.amazon.com/zh_cn/AmazonElastiCache/latest/red-ug/BestPractices.html
《使用CloudWatch监控Amazon ElastiCache 的最佳实践》:
https://aws.amazon.com/cn/blogs/database/monitoring-best-practices-with-amazon-elasticache-for-redis-using-amazon-cloudwatch/
《五个用来评估Amazon ElastiCache容量的工作负载指标》:
https://aws.amazon.com/cn/blogs/database/five-workload-characteristics-to-consider-when-right-sizing-amazon-elasticache-redis-clusters/
memtier_benchmark:
https://github.com/RedisLabs/memtier_benchmark.git
官网列表价:
https://aws.amazon.com/cn/elasticache/pricing/
成本计算例子:
https://calculator.aws/#/estimateid=783752bdbc0abfaa79c6f50146ae1071e03b07b4
本篇作者
陈卫琼
亚马逊云科技资深解决方案架构师
负责协助客户业务系统上云的解决方案架构设计和咨询,现致力于大数据和IoT相关领域的研究。
听说,点完下面4个按钮
就不会碰到bug了!