重装上阵——Graviton2提升ElastiCache for Redis的性价比!

1. 前言

从2020年10月开始,基于亚马孙云科技 Graviton2 的缓存实例逐步推出,客户可以在使用 Amazon ElastiCache for Redis上使用这些实例。

Graviton2 处理器由 Amazon Web Services 使用 64 位 ARM Neoverse 内核定制,对第一代亚马逊云科技 Graviton 处理器进行了多种性能优化。这包括 7 倍的性能、4 倍的计算核心数量、每个内核 2 倍的私有内存、5 倍的内存速度和每个核心 2 倍的浮点性能。此外,Graviton2 处理器还具有全天候运行的全加密 DDR4 内存功能,且每核加密性能提高 50%。这些性能提升使得装备了Graviton2 的实例成为缓存工作负载的上佳之选。

本文将向您展示Graviton2 R6g 缓存实例(测试实例类型cache.r6g,后续简称r6g或R6g)对R5缓存实例(cache.r5,后续简称r5或R5)的性能增强以及迁移到Graviton2 R6g 缓存实例的方法流程。

通过测试我们可以清楚地看到,无论是何种工作负载和并发条件,R6g实例比之同等资源配置的R5实例性能均有显著的提升,而且每小时单价却有下降,在这双重因素的叠加之下,选择新一代的r6g实例,具有更好的性能和性价比。

2. 环境准备

2.1 环境信息 

测试客户端(新加坡区域,AZ3)

表格:测试客户端配置

测试服务端(新加坡区域,主用在AZ3)

表格:测试服务端配置

ElastiCache for Redis选择默认参数,开启了集群模式(Cluster),数据用3个分片(每个分片1主2从,合计9个节点,为了系统的高可用和管理需要,默认参数会设置25%的内存作为预留内存,所以读者在自己做性能测试时要留意别把内存耗光导致结果失真,这也是我们没有选择最低配置的实例做测试的原因之一)。

部署完毕后的集群地址:

表格:测试的集群终端节点

我们把测试客户端和集群的主节点人工强行放到了同一个AZ以获取更直接的对比效果,同时选用的ElastiCache for Redis集群实例(3*3的2xlarge构建的集群)和测试客户端(8xlarge的EC2)均支持10G的带宽模式,读者在自己做测试时也要避免因网络带宽不足导致的测试结果失真。

可能很多读者会问,为什么测试的时候只选择这一个机型?细心的读者可能会发现,亚马逊云的机型是有一定规律的,例如4xlarge的配置刚好是2xlarge的两倍,而8xlarge的又刚好是4xlarge的两倍(以此类推,具体机型定义请参看网页链接:

https://docs.aws.amazon.com/zh_cn/AWSEC2/latest/UserGuide/instance-types.html)

所以此处我们用r5.2xlarge和r6g.2xlarge做个具有代表性的对比测试,就不用其他机型一一对比了。

2.2压测工具

此处我们使用两个不同的压测工具做针对性测试,一个是Redis自带的简单易用的redis-benchmark,一个是Redis Labs开源提供的在更高并发的场景使用的memtier_benchmark

2.2.1 redis-benchmark

redis-benchmark默认含在redis的分发里面,直接安装redis即可获得,在Amazon Linux 2操作系统上使用如下命令即可(这个安装在客户端上,后续迁移的时候也会用到这个客户端源)。

amazon-linux-extras install redis4.0 -y

其命令的常用参数选项如下:

表格:redis-benchmark的常用参数

2.2.2 memtier_benchmark

memtier_benchmark需要使用github上的源码进行编译才能使用,在Amazon Linux 2操作系统上可以使用如下方式:

yum install gcc git autoconf automake gcc-c++openssl-devel libevent-devel -y



mkdir /opt/memtier_benchmark

cd /opt/memtier_benchmark



git clone https://github.com/RedisLabs/memtier_benchmark.git



cd memtier_benchmark

autoreconf -ivf



./configure

make && make install

其命令的常用参数选项如下:

表格:memtier_benchmark的常用参数

3. 测试过程

3.1 只读测试

注意:只读测试,我们只演示测试redis-benchmark工具。

测试R5.2xlarge机型的只读测试命令如下(压测200万次,并发1000,随机key和value,大小1k,不使用管道)

1redis-benchmark -n 2000000 -c 1000 -t get -d 1024 -p 6379 -h r5-2xlarge-elasticache-for-redis-cluster-endpoint --csv

测试R6g.2xlarge机型的只读测试命令如下(压测200万次,并发1000,随机key和value,大小1k,不使用管道)

1redis-benchmark -n 2000000 -c 1000 -t get -d 1024 -p 6379 -h r6g-2xlarge-elasticache-for-redis-cluster-endpoint --csv

结果如下(此处截图仅供参考,不参与后面的性能统计):

图例:对实例进行只读测试

3.2只写测试

注意:只写测试,我们只演示测试redis-benchmark工具。

测试R5.2xlarge机型的只写测试命令如下(压测200万次,并发1000,随机key和value,大小1k,不使用管道)

1redis-benchmark -n 2000000 -c 1000 -t set,hset -d 1024 -p 6379 -h r5-2xlarge-elasticache-for-redis-cluster-endpoint --csv

测试R6g.2xlarge机型的只写测试命令如下(压测200万次,并发1000,随机key和value,大小1k,不使用管道)

1redis-benchmark -n 2000000 -c 1000 -t set,hset -d 1024 -p 6379 -h r6g-2xlarge-elasticache-for-redis-cluster-endpoint --csv

结果如下(此处截图仅供参考,不参与后面的性能统计):

图例:对实例进行只写测试

3.3混合测试

3.3.1通过redis-benchmark测试

此处我们设定四个场景,分别是如下两种并发和键值(key/value)大小的组合:

500并发,1k大小和4k大小;

1000并发,1k大小和4k大小;

如下为对应的测试命令(包括常用的命令SET和GET,以及在实际业务中比较常用的HSET)。

测试场景1-1:500并发,1k大小,200万次请求

1redis-benchmark -n 2000000 -c 500 -t set,get,hset -d 1024 -p 6379 -h r5-2xlarge-elasticache-for-redis-cluster-endpoint --csv

1redis-benchmark -n 2000000 -c 500 -t set,get,hset -d 1024 -p 6379 -h r6g-2xlarge-elasticache-for-redis-cluster-endpoint --csv

测试场景1-2:500并发,4k大小,200万次请求

1redis-benchmark -n 2000000 -c 500 -t set,get,hset -d 4096 -p 6379 -h r5-2xlarge-elasticache-for-redis-cluster-endpoint --csv

1redis-benchmark -n 2000000 -c 500 -t set,get,hset -d 4096 -p 6379 -h r6g-2xlarge-elasticache-for-redis-cluster-endpoint --csv

测试场景1-3:1000并发,1k大小,200万次请求

1redis-benchmark -n 2000000 -c 1000 -t set,get,hset -d 1024 -p 6379 -h r5-2xlarge-elasticache-for-redis-cluster-endpoint --csv

1redis-benchmark -n 2000000 -c 1000 -t set,get,hset -d 1024 -p 6379 -h r6g-2xlarge-elasticache-for-redis-cluster-endpoint --csv

测试场景1-4:1000并发,4k大小,200万次请求

1redis-benchmark -n 2000000 -c 1000 -t set,get,hset -d 4096 -p 6379 -h r5-2xlarge-elasticache-for-redis-cluster-endpoint --csv

1redis-benchmark -n 2000000 -c 1000 -t set,get,hset -d 4096 -p 6379 -h r6g-2xlarge-elasticache-for-redis-cluster-endpoint --csv

每种场景测试5次以上,然后取如下图所示的SET、GET和HSET的值并计算均值作为结果(因为redis-benchmark的单进程特性,在并发和模拟实际客户端场景层面难以完全覆盖,我们测试发现请求数在约10万/秒左右即达到上限,即使修改并发和数据大小也无法突破,所以这部分留给读者自己去做操作和测试验证,本文测试数据收集不考虑此工具,防止数据出现偏差)。

图例:对实例进行混合测试(SET/GET/HSET)

3.3.2通过memtier_benchmark测试

此处我们同样设定四个场景,为如下条件的组合:

  • 随机测分别测试500和1000并发,键值1k到4k大小随机,测试时间180秒,SET和GET的比例为1:4;

  • 正态分布(高斯分布)测试:分别测试500和1000并发,键值1k到4k大小随机,测试时间180秒,SET和GET的比例为1:4;

我们没有设置更高的并发或更大的键值测试,因为在测试的过程中,我们发现系统运行比较稳定,调高并发或键值会导致本文的测试客户端m5.8xlarge的带宽使用率直接打满10G(如果要测试集群的极限,建议采用多客户端的分布式测试方式,本文暂不涉及),我们的测试命令只包括SETGET,且为了更好的模拟实际生产环境中的读写比例,所以此处读写比例设置为1:4(模拟20%写)。

测试场景2-1:随机测试,500并发,键值1k-4k随机大小,测试时间180秒,SET和GET比例为1:4

1memtier_benchmark -R --data-size-range=1024-4096 --data-size-pattern=S --test-time 180 -t 10 -c 50 --cluster-mode --ratio=1:4 -p 6379 -s r5-2xlarge-elasticache-for-redis-cluster-endpoint

1memtier_benchmark -R --data-size-range=1024-4096 --data-size-pattern=S --test-time 180 -t 10 -c 50 --cluster-mode --ratio=1:4 -p 6379 -s r6g-2xlarge-elasticache-for-redis-cluster-endpoint

测试场景2-2:随机测试,1000并发,键值1k-4k随机大小,测试时间180秒,SET和GET比例为1:4

1memtier_benchmark -R --data-size-range=1024-4096 --data-size-pattern=S --test-time 180 -t 20 -c 50 --cluster-mode --ratio=1:4 -p 6379 -s r5-2xlarge-elasticache-for-redis-cluster-endpoint

1memtier_benchmark -R --data-size-range=1024-4096 --data-size-pattern=S --test-time 180 -t 20 -c 50 --cluster-mode --ratio=1:4 -p 6379 -s r6g-2xlarge-elasticache-for-redis-cluster-endpoint

测试场景2-3:正态分布(高斯分布)测试,500并发,键值1k-4k随机大小,测试时间180秒,SET和GET比例为1:4 

1memtier_benchmark -R --data-size-range=1024-4096 --data-size-pattern=S --test-time 180 -t 10 -c 50 --cluster-mode --key-pattern=G:G -p 6379 -s r5-2xlarge-elasticache-for-redis-cluster-endpoint

1memtier_benchmark -R --data-size-range=1024-4096 --data-size-pattern=S --test-time 180 -t 10 -c 50 --cluster-mode --key-pattern=G:G -p 6379 -s r6g-2xlarge-elasticache-for-redis-cluster-endpoint

测试场景2-4:正态分布(高斯分布)测试,1000并发,键值1k-4k随机大小,测试时间180秒,SET和GET比例为1:4

1memtier_benchmark -R --data-size-range=1024-4096 --data-size-pattern=S --test-time 180 -t 20 -c 50 --cluster-mode --key-pattern=G:G -p 6379 -s r5-2xlarge-elasticache-for-redis-cluster-endpoint

1memtier_benchmark -R --data-size-range=1024-4096 --data-size-pattern=S --test-time 180 -t 20 -c 50 --cluster-mode --key-pattern=G:G -p 6379 -s r6g-2xlarge-elasticache-for-redis-cluster-endpoint

在测试过程中,我们发现系统运行非常稳定,所以每种场景测试了6次,然后取如下图所示的Sets、Gets和Waits的p99均值(其中1000并发我们没有取p99的均值,而是取了总体的均值,因为我们发现在R5机型的集群中,1000并发的情况下,p99均值的波动和方差太大,而R6g的机型没有这个问题,为了方便对比,就没有取并发1000的延时p99均值)。

图例:对实例进行混合测试(本文测试数据集来自此测试模式)

3.4监控

在测试的过程中,我们可以在CloudWatch控制台查看ElastiCache的Cluster端的对应数据,类似如下(主要防止因为资源耗尽的原因导致结果异常,如CPU,带宽等):

图例:CloudWatch的监控数据

在测试客户端,每一次使用memtier_benchmark测试都会输出对应的网络流量,记得别超过实例的最高值即可,否则请使用多个实例的分布式并发测试(例如想压测出ElastiCache for Redis的集群的性能极限)或者使用更高规格的实例(对应网络带宽会更大)。

4. 对比分析

针对之前的混合读写测试场景,我们针对memtier_benchmark工具的4个不同场景各做了6轮测试(每次重新开始测试前使用“flushdb/flushall”清理集群中的3个主分片,我们发现测试的结果非常的接近,表示服务器端运行稳定),获取到的原始数据如下:

表格:测试获取到的原始数据

4.1性能对比

注意:在计算比例时,以结果优的为基数(分母)。

4.1.1写入性能对比

在场景2-1中,r6g对比r5,其SET的每秒请求数提升了40%;

在场景2-2中,r6g对比r5,其SET的每秒请求数提升了37%;

在场景2-3中,r6g对比r5,其SET的每秒请求数提升了37%;

在场景2-4中,r6g对比r5,其SET的每秒请求数提升了34%。

对比结果如下图所示(数值越大越好):

图例:SET写入场景性能对比0

4.1.2读取性能对比

在场景2-1中,r6g对比r5,其GET的每秒请求数提升了40%;

在场景2-2中,r6g对比r5,其GET的每秒请求数提升了37%;

在场景2-3中,r6g对比r5,其GET的每秒请求数提升了37%;

在场景2-4中,r6g对比r5,其GET的每秒请求数提升了34%。

对比结果如下图所示(数值越大越好):

图例:GET读取场景性能对比

4.1.3响应延时对比

在场景2-1中,r6g对比r5,其p99(99%)的响应延时降低了36%;

在场景2-2中,r6g对比r5,其平均响应延时降低了37%;

在场景2-3中,r6g对比r5,其p99(99%)的响应延时降低了50%;

在场景2-4中,r6g对比r5,其平均响应延时降低了36%;

对比结果如下图所示(数值越小越好):

图例:请求延时对比

4.2性价比对比

我们从Amazon Web Services的官网列表价 查询到如下的ElastiCache for Redis实例每小时的价格(价格根据不同区域,不同时间会有差异,此处以2021-04-29的新加坡区域为例,最新和最终价格以官网页面为准):

Amazon Web Services也提供一个云上的成本计算器,针对上述两种机型,我给大家做了一个成本计算的例子供大家分享。

4.3结论

同样条件下的性能测试和延时,R6g机型(基于Graviton 第2代的ARM架构)均大幅领先原有基于通用CPU的R5机型。通过测试我们可以清楚地看到,无论是何种工作负载和并发条件,R6g实例比之同等资源配置的R5实例性能均有显著的提升,而每小时单价却有下降,因而R6g实例对客户来说,有更好的性价比。

综上所述,结合性能优势和价格优势,新发布的R6g机型将是客户在使用ElastiCache for Redis服务时的更优选择。

注意:当您按本文步骤进行测试的时候,随着环境,测试步骤的不同,可能需要对命令参数进行微调,测试结果也会有相应变化,但测试的思路以及测试结果变化的客观规律却是共通的。

5.实例的迁移

相对于ElastiCache for Redis管理服务,部分客户也喜欢自建Redis平台,但是相对平台服务而言,有如下比较明显的缺点和难题需要解决:

  • 难以管理:管理服务器配置、软件补丁、安装、配置与备份

  • 难以实现高可用:需要快速执行错误检测与修复

  • 难以扩展:在线扩展可能引发错误,且需要监控副本性能

  • 成本高昂:人员、流程、硬件与软件需要占用大量资金

除了前面章节对比测试的性能和延时,以及成本优势外,使用ElastiCache for Redis的管理服务还有如下优势可以让客户直接开箱即用:

  • 极致性能:提供小于1ms的响应时间;当前最大支持500个节点,340TB存储的最大Redis集群;最大支持3250万连接数,满足极致场景的巅峰性能;

  • 全托管:Amazon Web Services管理所有的硬件以及软件的配置和监控;

  • 易伸缩:通过副本提供读操作的弹性伸缩,通过分片提供写操作非中断的弹性伸缩;支持横向和纵向的弹性伸缩;

  • 可靠性保障:多可用区(免跨AZ流量费)支持,深度和详细的监控和告警,自动故障转移(10-20s内实现Fail Over);

  • 安全和合规:通过Amazon VPC实现网络隔离和管理,符合HIPAA,PCI和FedRAMP等安全和合规要求,存储和传输中支持进行加密和身份认证;

  • 兼容性:兼容多个Redis版本和客户端,支持导入导出,支持快照和恢复等;

5.1纯手工迁移

比较传统的方式是把运行在EC2(或者容器)里面的Redis数据做个备份导出(通过在reids-cli中使用阻塞式的save命令或者后台方式的bgsave命令),然后把导出文件存到S3(当前只支持从S3导入),然后在ElastiCache控制台创建集群时选择导入位于S3的备份文件,在这种操作方式下,如果源还在继续使用可能会导致两边的数据不完全同步,如果源不操作等新集群可用户再切换的话,则会有一定的服务中断时间。

具体操作见从备份还原的指引文档 ,本文不做额外的演示和说明。

5.2使用redis-migration-tool进行迁移

Redis-migration-tool是github上开源的一个Redis迁移工具,使用它可以在不同的Redis环境(如单机,集群等)实现同步和复制。

在Amazon Linux 2操作系统上可以使用如下方式使用redis-migration-tool:

1mkdir /opt/redis-migration-tool && cd /opt/redis-migration-tool
2
3git clone https://github.com/vipshop/redis-migrate-tool.git

因为这个工具有段时间没更新了,我们使用的是比较新的Redis 6.0.5版本,所以需要修改一下源码中关于RDB文件版本的定义。

修改“/opt/redis-migration-tool/redis-migrate-tool/src/rmt_redis.c”,把原来的“#define REDIS_RDB_VERSION 7”修改成“#define REDIS_RDB_VERSION 10”,然后再编译:

 1cd /opt/redis-migration-tool/redis-migrate-tool
 2
 3autoreconf -fvi
 4
 5./configure
 6
 7make
 8
 9
10
11#编译好的文件位于src/redis-migrate-tool

接着编辑对应的配置文件“/opt/redis-migration-tool/redis-migrate-tool/rmt.conf”,内容如下(记得修改对应的集群endpoint):

 1[source]
 2
 3type: single
 4
 5servers :
 6
 7- 127.0.0.1:6379
 8
 9
10
11[target]
12
13type: redis cluster
14
15servers:
16
17- r6g-2xlarge-elasticache-for-redis-cluster-endpoint:6379
18
19
20
21[common]
22
23listen: 0.0.0.0:8888

同时,我们此处使用之前的测试机(那个m5.8xlarge的EC2)的机器当做源,然后通过脚本往里面压数据,命令如下(模拟一个并发,一个客户端,持续180秒的写入随机数据):

1memtier_benchmark -R --data-size-range=1024-4096 --data-size-pattern=S --test-time 180 -t 1 -c 1 -p 6379 -s 127.0.0.1

5.2.1准备

原来在准备redis-benchmark工具的时候已经安装了redis服务,此处我们把服务启动,并确认数据内容,同时手工写入一个key做测试,如下:

 1systemctl enable redis
 2
 3systemctl start redis
 4
 5
 6
 7redis-cli
 8
 9# keys *
10# set owner "WeiqiongChen"

源如下所示(没有其他数据,只有我们手工写入的key):

图例:准备位于EC2的源Redis(单机版)

目标如下所示(没有其他数据,也没有我们手工写入的key,因为还没开始同步):

图例:清理目标ElastiCache for Redis集群环境

5.2.1迁移和同步

在源通过如下命令开始生成数据

1memtier_benchmark -R --data-size-range=1024-4096 --data-size-pattern=S --test-time 180 -t 1 -c 1 -p 6379 -s 127.0.0.1

如下:

图例:启动源

然后再启动同步(特意晚启动同步模拟客户真实的迁移场景)

1cd /opt/redis-migration-tool/redis-migrate-tool
2
3./src/redis-migrate-tool -c ./rmt.conf -o log &

如下所示:

图例:启动源到目的的同步

5.2.1验证

我们统计源注入的数据量,如下(此处为473563个key):

图例:查看源的数据量

对比查看目标库同步的数据量(因为目标卡集群分成三个片了,所以要统计三个分片的总数),如下(此处合并总数依然是473563个key):

图例:查看目标的数据量

注意:读者们可以在源多做几轮测试,验证同步结果是否符合预期(如果没有数据同步或者有异常,可以查看redis-migration-tool目录的log文件查看异常信息)。

扩展阅读

《Amazon ElastiCache用户指南》:

https://docs.aws.amazon.com/zh_cn/AmazonElastiCache/latest/red-ug/GettingStarted.html

《Amazon ElastiCache 最佳实践》:

https://docs.aws.amazon.com/zh_cn/AmazonElastiCache/latest/red-ug/BestPractices.html

《使用CloudWatch监控Amazon ElastiCache 的最佳实践》:

https://aws.amazon.com/cn/blogs/database/monitoring-best-practices-with-amazon-elasticache-for-redis-using-amazon-cloudwatch/

《五个用来评估Amazon ElastiCache容量的工作负载指标》:

https://aws.amazon.com/cn/blogs/database/five-workload-characteristics-to-consider-when-right-sizing-amazon-elasticache-redis-clusters/

memtier_benchmark:

https://github.com/RedisLabs/memtier_benchmark.git

官网列表价:

https://aws.amazon.com/cn/elasticache/pricing/

成本计算例子:

https://calculator.aws/#/estimateid=783752bdbc0abfaa79c6f50146ae1071e03b07b4

本篇作者

陈卫琼

亚马逊云科技资深解决方案架构师

负责协助客户业务系统上云的解决方案架构设计和咨询,现致力于大数据和IoT相关领域的研究。

听说,点完下面4个按钮

就不会碰到bug了!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值