呼叫医生云! Amazon HealthLake 现已正式上线

在 2020 年亚马逊云科技 re:Invent 大会上,我们预览了 Amazon HealthLake,这是一项完全托管、符合 HIPAA 标准的服务。医疗保健和生命科学客户可以利用此服务将来自不同孤岛和不同格式的健康信息汇总到结构化的集中式亚马逊云科技数据湖,并通过分析和机器学习 (ML) 从这些数据中获取洞察。近期,亚马逊云科技非常高兴地宣布,Amazon HealthLake 正式发布,可供所有亚马逊云科技客户使用。

  • Amazon HealthLake:

    https://aws.amazon.com/healthlake/

能够快速存储、转换和分析任何规模的健康数据对于做出合理的健康决策至关重要。在日常实践中,医生需要遵循时间顺序的患者病史视图,以确定最佳治疗方案。如果出现紧急情况,在适当的时间向医疗团队提供适当的信息可以显著改善患者的治疗效果。同样,医疗保健和生命科学研究人员也需要高质量的规范化数据,以便据以进行分析和构建模型,来确定人口健康趋势或药物试验受体。

传统上,大多数健康数据都锁定在临床笔记等非结构化文本中,并存储在 IT 孤岛中。异构应用程序、基础设施和数据格式使得从业人员难以访问患者数据并从中获得洞察。我们构建了 Amazon HealthLake 来解决此问题。

如果您迫不及待要开始使用该服务,可以立即跳转到Amazon HealthLake的亚马逊云科技控制台。如果您想了解更多信息,请继续阅读!

  • 亚马逊云科技控制台:

    https://console.aws.amazon.com/healthlake/home

???? 想要了解更多亚马逊云科技最新技术发布和实践创新,敬请关注2021亚马逊云科技中国峰会!点击图片即刻报名~

隆重推出 Amazon HealthLake

Amazon HealthLake 由完全托管的亚马逊云科技基础设施提供支持。您不必采购、预置或管理一件 IT 设备。需创建一个新的数据存储即可,而这仅需几分钟时间。数据存储准备就绪后,您可以立即创建、读取、更新、删除和查询数据。Amazon HealthLake 公开了一个简单的 REST 应用程序编程接口 (API),以最常用的语言提供,客户和合作伙伴可以轻松地将其集成到自己的业务应用程序中。

  • Amazon HealthLake:

    https://aws.amazon.com/healthlake/

  • 最常用的语言

    https://aws.amazon.com/tools/

确保安全是亚马逊云科技的首要任务。默认情况下, Amazon HealthLake 使用 Amazon Key Management Service (KMS) 对静态数据进行加密。您可以使用亚马逊云科技托管的密钥,也可以使用自己的密钥。Amazon KMS 旨在让包括亚马逊云科技员工在内的任何人都不能从服务中检索您的明文密钥。对于传输中的数据, Amazon HealthLake 使用行业标准的 TLS 1.2 端到端加密。

  • Amazon Key Management Service (KMS) 

    https://aws.amazon.com/kms/

发布时, Amazon HealthLake 支持结构化和非结构化文本数据,这些数据通常可以在临床笔记、实验室报告、保险索赔等中找到。该服务以快速医疗保健互操作性资源(FHIR,发音为“fire”)格式存储这些数据,该格式是一种旨在支持健康数据交换的标准。Amazon HealthLake 与最新修订版本 (R4) 兼容,目前支持 71 种 FHIR 资源类型,后续还会支持更多资源。

  • 快速医疗保健互操作性资源

    https://www.hl7.org/fhir/

  • 71 种 FHIR 资源类型

    https://docs.aws.amazon.com/healthlake/latest/devguide/crud-healthlake.html

如果您的数据已经采用了 FHIR 格式,那就太棒了!如果还没有采用这种格式,您可以自行进行转换,也可以使用 Amazon Marketplace 中提供的合作伙伴解决方案。发布时, Amazon HealthLake 包括针对 RedoxHealthLXDiameter HealthInterSystems 应用程序进行了验证的连接器。它们可以轻松将 HL7v2、CCDA 和平面文件数据转换为 FHIR 格式,然后将其上传到  Amazon HealthLake。

  • Amazon Marketplace 

    https://aws.amazon.com/marketplace

  • Redox

    https://www.redoxengine.com/

  • HealthLX

    https://www.healthlx.com/

  • Diameter Health 

    https://www.diameterhealth.com/

  • InterSystems 

    https://www.intersystems.com/

上传数据时, Amazon HealthLake 使用集成的自然语言处理提取文档中存在的实体并存储相应的元数据。这些实体包括解剖、医疗条件、药物、受保护的健康信息、测试、治疗和程序。它们还与行业标准的 ICD-10-CM 和 RxNorm 实体匹配。

上传数据后,您可以通过将参数值分配给 FHIR 资源和提取的实体来开始查询这些数据。无论您是需要访问一位患者的信息,还是想导出许多文档以构建研究数据集,都只需一次 API 调用即可。

我们来做一个快速演示。

在 Amazon HealthLake 

中查询 FHIR 数据

打开 Amazon HealthLake 的亚马逊云科技控制台,单击“Create a Data Store (创建数据存储)”。然后,我只需为我的数据存储选择一个名称,并决定使用亚马逊云科技托管的密钥对其进行加密即可。我还会勾选预加载示例合成数据的复选框,这是快速开始使用服务的好方法,无需上传我自己的数据。

  • 亚马逊云科技控制台

    https://console.aws.amazon.com/healthlake/home

几分钟后,数据存储处于活动状态,我可以向其 HTTPS 终端节点发送查询。在下面的示例中,我查找包含 ICD-CM-10“高血压”实体的临床笔记(且仅限临床笔记),置信度得分为 99% 或更高。在后台,亚马逊云科技控制台会向终端节点发送 HTTP GET 请求。我突出显示了相应的查询字符串。

查询只需运行几秒。在我的浏览器中检查 JSON 响应时,我发现有两个文档。对于每个文档,我都会看到很多信息:创建时间、所属组织、作者是谁等等。我还会看到 Amazon  HealthLake 自动提取了一个很长的实体列表,包括名称、描述和置信度得分,并将其添加到了文档中。

文档以 base64 格式附加在响应中。

将字符串保存到文本文件中,然后使用命令行工具对其进行解码,然后我看到了以下内容:

Nesser 先生是一位 52 岁的白种男性,有很多既往病史,包括冠状动脉疾病、房颤、高血压、高脂血症,就诊于北急诊科,主诉寒战、恶心、急性左腹疼痛和左腿有些麻木

此文档完全正确。正如您所看到的,查询和检索存储在 Amazon HealthLake 中的数据非常简单。

  • Amazon HealthLake 

    https://aws.amazon.com/healthlake/

分析 Amazon HealthLake 

中存储的数据

您可以从 Amazon  HealthLake导出数据,将其存储在 Amazon Simple Storage Service (Amazon S3) 存储桶中,然后将其用于分析和 ML 任务。例如,您可以使用 Amazon Glue 转换数据,使用 Amazon Athena 查询数据,以及使用 Amazon QuickSight 直观呈现数据。您还可以使用这些数据在 Amazon SageMaker 上构建、训练和部署 ML 模型。

  • 导出数据

    https://docs.aws.amazon.com/healthlake/latest/devguide/export-datastore.html

  • Amazon Simple Storage Service (Amazon S3)

    https://aws.amazon.com/s3/ 

  • Amazon Glue 

    https://aws.amazon.com/glue/

  • Amazon Athena 

    https://aws.amazon.com/athena

  • Amazon QuickSight

    https://quicksight.aws/

  • Amazon SageMaker 

    https://aws.amazon.com/sagemaker/

以下博客文章向您展示了基于 HealthLake 中所存储数据的端到端分析和 ML 工作流:

  • Population health applications with Amazon HealthLake: Analytics and monitoring using Amazon QuickSight

    https://aws.amazon.com/blogs/machine-learning/population-health-applications-with-amazon-healthlake-part-1-analytics-and-monitoring-using-amazon-quicksight/

  • Building predictive disease models using Amazon SageMaker with Amazon HealthLake normalized data

    https://aws.amazon.com/blogs/machine-learning/building-predictive-disease-models-using-amazon-sagemaker-with-amazon-healthlake-normalized-data/

  • Build patient outcome prediction applications using Amazon HealthLake and Amazon SageMaker

    https://aws.amazon.com/blogs/machine-learning/build-patient-outcome-prediction-applications-using-amazon-healthlake-and-amazon-sagemaker/

  • Build a cognitive search and a health knowledge graph using Amazon AI services

    https://aws.amazon.com/blogs/machine-learning/build-a-cognitive-search-and-a-health-knowledge-graph-using-amazon-healthlake-amazon-kendra-and-amazon-neptune/

最后但同样重要的一点是,此自定进度的研讨会将向您展示如何使用 Amazon  HealthLake 导入和导出数据,如何使用 Amazon Glue 和 Amazon Athena 处理数据,以及如何构建 Amazon QuickSight 控制面板。

现在,我们来了解一下我们的客户使用  Amazon HealthLake 取得的成果。

  • 自定进度的研讨会

    https://amazon-healthlake.workshop.aws/

客户已在使用 Amazon HealthLake

总部位于芝加哥的拉什大学医疗中心是 Amazon  HealthLake 的早期采用者。他们代表芝加哥公共卫生部使用此服务构建了公共卫生分析平台。该平台汇总、合并和分析多家医院的患者入院、出院和转院、电子实验室报告、医院容量以及在芝加哥各医院接受治疗的新冠肺炎 (COVID-19) 患者的临床护理文档相关数据。芝加哥 32 家医院中有 17 家目前正在提交数据,Rush 计划在今年夏天之前整合所有 32 家医院。更多信息请参见此博客文章

  • 拉什大学医疗中心

    https://www.rush.edu/

  • 博客文章

    https://aws.amazon.com/blogs/publicsector/rush-medical-center-aws-analytics-hub/

最近,Rush 启动了另一个项目,旨在确定高血压风险最高的社区,了解健康的社会决定因素,并改善医疗保健服务。为此,他们收集各种数据,例如临床笔记、社区的动态血压测量结果以及医疗保险索赔数据。然后,将这些数据摄取到 Amazon  HealthLake 中并以 FHIR 格式存储,以供进一步分析。

  Bala Hota

Ernesto DiMarino

Pandian  

Velayutham 

Bala Hota博士是拉什大学医疗中心副总裁兼首席分析官,他表示:“我们不需要花时间构建无关项目或重建已经存在的项目。这使我们能够更快进入分析阶段。Amazon HealthLake 确实加快了我们向大众交付成果所需的洞察。我们不想将所有时间都用在构建基础设施上。我们想提供洞察。”

Cortica 的使命是为患有自闭症和其他发育缺陷的儿童带来革命性的医疗保健服务。如今,Cortica 使用 Amazon HealthLake 以标准化、安全且合规的方式存储所有患者数据。利用这些数据构建 ML 模型,他们可以通过情绪分析跟踪患者治疗进展,并且可以与父母分享孩子在语言发展和运动技能方面的进展。Cortica 还可以验证治疗模式的有效性并优化药物治疗方案。

Cortica 企业应用程序和数据负责人 Ernesto DiMarino 告诉我们:“在短短几周内,而不是几个月的时间里,Amazon HealthLake 就帮助我们创建了一个集中式平台,可安全地存储患者病史、药物史、行为评估和实验室报告。该平台让我们的临床团队可以更深入地了解患者的护理进展。使用 Amazon SageMaker 中的预定义笔记本和来自 Amazon HealthLake 的数据,我们可以应用机器学习模型来跟踪和预测每位患者在实现其目标方面的进展情况,使用其他方法是不可能实现的。通过这项技术,我们还能够以互操作的方式与我们的患者、研究人员和医疗保健合作伙伴共享符合 HIPAA 标准的数据,进一步推进自闭症治疗方面的重要研究。”

MEDHOST 为 1000 多家各种类型和规模的医疗保健机构提供产品和服务。这些客户希望开发以 FHIR 格式对患者数据进行标准化处理的解决方案,并构建控制面板和高级分析以改善患者护理服务,但目前此任务既困难又耗时。

MEDHOST 工程部高级总监 Pandian Velayutham表示:“借助 Amazon HealthLake,我们可以在短短几天而不是数周内创建合规的 FHIR 数据存储,并集成自然语言处理和分析,从而提高医院的运营效率,提供更好的患者护理服务,满足客户的需求。”

开始使用

Amazon HealthLake 目前面向美国东部(弗吉尼亚北部)、美国东部(俄亥俄)和美国西部(俄勒冈)区域推出。

  • Amazon HealthLake:

    https://aws.amazon.com/healthlake/

立即尝试学习我们自定进度的研讨会,并向我们提供反馈。如往常一样,我们期待您的反馈。您可以通过您的常用 Amazon Support 联系人发送反馈或者将反馈发布到亚马逊云科技论坛

  • 自定进度的研讨会:

    https://amazon-healthlake.workshop.aws/

  • 亚马逊云科技论坛:

    https://forums.aws.amazon.com/index.jspa

本篇作者

Julien Simon

听说,点完下面4个按钮

就不会碰到bug了!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值