李家豪的编程小屋

起飞的IT菜鸟

汉诺塔(一)

/*
 * Copyright (c) 2013, 烟台大学计算机学院
* All rights reserved.
* 作    者: 李家豪
* 完成日期:2013 年10月23日
* 版 本 号:v1.0
* 问题描述:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具。古代有一个
            梵塔,塔内有三个座A、B、C,A座上有64个盘子,盘子大小不等,大的在下,
            小的在上。有一个和尚想把这64个盘子从A座移到C座,但每次只能允许移动一
            个盘子,并且在移动过程中,3个座上的盘子始终保持大盘在下,小盘在上。在
            移动过程中可以利用B座,下面左图给出了移动方法的提示。请编制递归函数输
            出盘子数为4时(程序调试后,试试15个、20个,直至64个,看看会如何),移
            动的方案。下图为盘子数为3时的输出供参考。
* 样例输入:
* 样例输出:
* 问题分析:
*/

//递归解法
#include <iostream>
using namespace std;
const int discCount=3;
void move(int, char, char,char);
int main()
{
	move(discCount,'A','B','C');
	return 0;
}


void move(int n, char A, char B,char C)
{
	if(n==1)
	{
		cout<<A<<"-->"<<C<<endl;
		return;
	}
	else
	{
		move(n-1,A,C,B);
		cout<<A<<"-->"<<C<<endl;
		move(n-1,B,A,C);
		return;
	}
}


运行结果:

 

体会心得:模仿的...

阅读更多
上一篇最大公约数之递归解法
下一篇汉诺塔(二)
想对作者说点什么? 我来说一句

java GUI版汉诺塔源码

2010年05月01日 19KB 下载

没有更多推荐了,返回首页

关闭
关闭