Linux 入门

1.Shell概念理解

系统分为内核(kernel)和外壳(shell)

kernel的功能:负责一些底层功能的实现,比如进程间的通信(消息传递),存储器管理,进程管理,磁盘读写等等

                      用户不能直接操控kernel

shell的功能:将用户的操作,转换成相应的kernel操作

 

Shell有2种类型,CLI和GUI

CLI:命令行操控方式

GUI:图形界面操控方式,通过鼠标点击图形界面,就能实现各种操作

 

Linux操作系统的shell,既有CLI也有GUI,名称如下

CLI:  BASH  (主要管理方式)

GUI:  GNOME

 

2.命令行

2.1命令行由3部分组成 

  • 命令
  • 选项
  • 参数

例子:

[linuxcast@linuxcast -] $  uname -r

                                         命令   参数

 

参数以-开头,如-a、-r等

 

2.2 &

[linuxcast@linuxcast -] $ firefox &

&表示:程序在后台运行,不会干扰当前命令行

 

2.3tab键

  • 按1次tab键:当命令能唯一识别时,使用Tab键可以自动补全命令 
  • 按2次tab键:列出所有以输入开头的命令
  • tab键盘无法补全参数

 

2.4提示符分为  $

#表示:当前是root身份

$表示:当前是普通用户身份

 

2.5其他命令

date  显示时间

hwclock  (hardware clock) 显示硬件时钟时间

cal  显示日历

uptime  显示系统运行时间,负载

echo "xxx"  在屏幕上打印xxx

lspci 显示所有硬件设备,结果中每行是一个设备   -v查看详细信息

lsusb  查看usb设备   -v查看详细信息

su - 切换到root用户

sudo 使用管理员身份运行命令

id     显示当前用户信息

password 修改当前用户密码

ctrl+z  暂停程序

ctrl+c  结束程序

jobs  查看所有进程

bg    将进程放到后台运行

fg     将进程放到前台运行
shutdown  -h now 立即关机

shutdown  -r 10    10分钟后重启

压缩文件 格式: zip 压缩后的文件名 被压缩的文件  例子:  zip test2 test

解压文件 格式:unzip 文件名                                       例子:unzip test2.zip

vim 目标文件  启动vim文本编辑器

 

【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值