自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(89)
  • 资源 (4)
  • 收藏
  • 关注

原创 OceanBase性能调优分享:混合工作负载下的脚本自动化调优与深度分析

在大规模分布式系统中,OceanBase提供了灵活的脚本化管理和SQL诊断能力,本文通过Python脚本自动化分析混合负载下的执行计划和配置调优,联合Java业务代码实现性能优化的落地。OceanBase支持分布式查询,使用Java JDBC的 `PreparedStatement` 结合流式查询功能减少内存开销,高效处理大规模结果集。update_resource_group('query_tenant', max_memory='32G', zone='read_only') 读事务独享资源。

2025-12-30 11:47:01 591

原创 人工智能(三级)认证在一线城市的详细价值解析

人工智能(三级)职业资格证书可享受国家与地方双重政策红利:国家层面提供2000-3000元技能补贴及3600元个税扣除;一线城市推出差异化支持,如北京积分落户加5分、上海缩短落户年限、广州人才绿卡及深圳最高5300元补贴。该认证既是个人职业发展的"金钥匙",又能帮助企业获得政府优惠。建议关注政策动态,选择合规机构报考,及时申请补贴。当前正值人工智能战略机遇期,持证可同步享受经济回报与城市发展权益。

2025-12-18 12:13:49 579

原创 SQL查询中枚举值到中文的转换方法综述

在SQL查询中将枚举值转换为中文显示有几种常见方法,下面我将介绍几种常用的实现方式

2025-04-03 12:16:32 611

原创 2025全球AI大模型终极对决:ChatGPT、DeepSeek、Gemini谁将称王?

2025年,随着大模型技术持续演进、多模态能力突破以及行业应用深化,ChatGPT、DeepSeek等AI产品的竞争格局将更加激烈。以下是基于技术趋势、用户规模和商业化潜力的预测性排行榜

2025-03-27 12:40:09 2004

原创 与Aspose.pdf类似的jar库分享

类似于 Aspose.PDF 的 JAR 库,这些库通常用于处理 PDF 文档的创建、编辑、转换、合并等功能。

2025-03-26 20:36:33 1247

原创 Oracle到达梦数据库迁移:技术要点与实践分享

Oracle到达梦数据库迁移技术要点与实践分享

2025-03-26 12:30:07 1338

原创 Spring Cloud项目常见问题及解决方案技术分享

Spring Cloud项目中常见技术问题解决方案分享

2025-03-24 20:22:58 1651

原创 从PolarDB到OceanBase:国内主流数据库错误码全解析

主流数据库系统(如阿里云、腾讯云、华为云等)通常基于开源数据库(如MySQL、PostgreSQL等)或自研数据库,其错误码体系可能与开源数据库类似,但也可能有自定义的错误码,主流数据库错误码的汇总。

2025-03-24 12:26:35 1447

原创 从Oracle到OceanBase数据库迁移:全方位技术解析

oracle数据库应用适配oceanbase数据库技术分享

2025-03-23 20:08:33 3177

原创 从Oracle到腾讯TDSQL数据库升级技术分享

腾讯TDSQL(Tencent Distributed SQL)是一款兼具关系数据库和NoSQL数据库优点的新型数据库,文章主要分享oracle升级为TDSQl数据库技术经验。

2025-03-23 19:51:00 2287

原创 万亿级数据量的OceanBase应用从JVM到协议栈立体化改造实现性能调优

本文基于某电商平台亿级商品详情页场景,通过Java应用层与数据库层的协同优化,实现98%的查询响应时间低于50ms。

2025-03-22 20:03:07 630

原创 OceanBase数据库基于脚本的分布式存储层性能深度优化

通过OceanBase自研的SQL解析器和存储引擎特性,结合Python脚本实现分布式存储层的精细化调优,解决大规模数据写入性能瓶颈。

2025-03-22 19:55:46 906

原创 深入解析JasperReports模板标签构建高效报表的利器系列三

Jasper 模板标签是 JasperReports 库中用于定义报表布局和内容的一种标记语言。JasperReports 是一个开源的 Java 报表工具,广泛用于生成各种格式的报表(如 PDF、Excel、HTML 等)。模板标签在 JasperReports 的 XML 模板文件中使用,用于定义报表的结构、数据源、样式等。

2025-03-21 12:29:24 891

原创 Struts+Hibernate迁移到SpringBoot+MyBatisPlus的完整指南与避坑手册

将Struts+Hibernate迁移到SpringBoot+MyBatisPlus的过程

2025-03-18 10:55:33 1333

原创 ORA-00600错误的深度剖析:如何避免与解决?

`ORA-00600` 是 Oracle 数据库的一个内部错误代码,通常表示数据库遇到了一个未预期的内部异常或 bug。

2025-03-17 17:27:17 4650

原创 深入解析JasperReports模板标签构建高效报表的利器系列二

JasperReports 是一个开源的 Java 报表工具,广泛用于生成各种格式的报表(如 PDF、Excel、HTML 等)。模板标签在 JasperReports 的 XML 模板文件中使用,用于定义报表的结构、数据源、样式等。

2025-03-03 20:18:42 693

原创 Java中Date转LocalDateTime

Date转换为LocalDateTime的实现方法

2025-03-03 14:12:45 1866

原创 深入解析JasperReports模板标签构建高效报表的利器系列一

Jasper 模板标签是 JasperReports 库中用于定义报表布局和内容的一种标记语言。JasperReports 是一个开源的 Java 报表工具,广泛用于生成各种格式的报表(如 PDF、Excel、HTML 等)。模板标签在 JasperReports 的 XML 模板文件中使用,用于定义报表的结构、数据源、样式等。

2025-03-02 20:00:53 1606

原创 从基础到进阶的Java学习技术指南

在Java技术领域,经验分享可以帮助开发伙伴更好地理解和应用这门语言。

2025-03-02 19:40:14 700

原创 医护人员DeepSeek实用操作指南,建议收藏!

DeepSeek 是一款基于人工智能和大数据技术的智能搜索与分析平台,专为医疗行业设计。它能够帮助医护人员快速检索患者信息、管理医疗数据,并提供智能化的分析支持。

2025-03-01 19:50:03 7180

原创 DeepSeek使用操作指南:开发人员实战手册

以下是为开发人员编写的DeepSeek使用操作指南,旨在帮助开发人员快速掌握DeepSeek的集成与使用方法,满足IT行业对数据搜索、分析和监控的需求。

2025-03-01 19:33:01 1175 1

原创 文件泄露类安全漏洞技术分享 - Java为例

通过严格的权限控制、隐藏文件路径、加密存储文件、严格处理文件上传等技术措施,可以有效防止文件泄露漏洞的发生。4.不安全的配置和文件存储:在应用中使用不安全的文件存储方法,例如将敏感文件存储在公有目录,或者错误地配置服务器使得敏感文件可以直接通过HTTP访问。2.暴露文件路径:文件存储路径、文件名或者文件内容未进行适当的隐藏或加密,导致攻击者可以通过猜测或暴力破解访问敏感文件。1.缺乏适当的访问控制:应用程序没有针对文件的访问进行严格的权限控制,导致敏感文件可以被未经授权的用户访问。

2025-02-27 12:12:37 1506

原创 Java HTTP 请求的四种实现方式:Apache HttpClient、OkHttp、WebClient 与 Java 11 HttpClient

在现代Java开发中,`HttpClient`和`PostMethod`是较旧的ApacheHttpClient3.x的API。推荐使用更现代的技术来替代这些代码,例如Java11+内置的`HttpClient`或第三方库如OkHttp或SpringWebClient。

2025-02-26 17:27:31 1393

原创 提高互联网Web安全性:避免越权漏洞的技术方案

越权(Authorization Bypass)类漏洞是指在系统中,攻击者通过绕过身份验证或访问控制,获取本不应访问的资源或执行本不应执行的操作。简单来说,越权漏洞发生时,用户能够访问或操作超出其授权范围的数据或功能。

2025-01-14 15:33:08 1545

原创 提高数据安全性:Java 中的混合加密算法应用

在现代信息安全领域,加密算法扮演着至关重要的角色。为了提升加密效率并确保数据的安全性,混合加密算法成为了一种常见的加密技术。本文将介绍混合加密算法的概念,并通过 Java 示例展示其实现方法。

2025-01-12 19:30:09 614

原创 Java 数组与集合的深度解析与应用场景选择

在 Java 中,数组和集合是两种常见的数据结构,它们各自有不同的特点和应用场景。理解它们的基本概念及差异,对于写出高效、灵活的代码至关重要。本文将详细介绍 Java 中数组和集合的基本使用、优缺点以及适用场景。

2025-01-12 19:23:26 1045

原创 从MD5到SHA-3:哈希算法的演变与安全性分析

在现代信息安全中,哈希算法是一种基础且重要的工具。它广泛应用于数据完整性校验、密码存储、数字签名以及区块链技术中。与对称和非对称加密不同,哈希算法的主要作用是将任意长度的输入数据映射为固定长度的输出数据,并且该过程是单向的,即无法从哈希值恢复原始数据。

2025-01-08 19:48:27 1292

原创 深入探讨:DES、3DES与RC4加密算法的原理、优缺点及应用分析

加密算法在信息安全中扮演着至关重要的角色,确保数据在传输过程中的机密性和完整性。对称加密算法作为其中的一类,利用同一个密钥进行加密和解密,广泛应用于各种场景。本篇文章将重点介绍三种经典的对称加密算法:DES(数据加密标准)、3DES(三重数据加密标准)与RC4,并对它们的工作原理、特点、优缺点进行分析。

2025-01-08 15:45:18 1865

原创 深入理解非对称加密:用Java实现RSA加解密

在现代安全通信中,非对称加密广泛应用于数据保护、身份验证、数字签名、SSL/TLS协议等场景。非对称加密算法中最常见的算法是 RSA(Rivest-Shamir-Adleman)算法。

2025-01-06 20:36:30 1623

原创 探索Java中的对称加密:AES算法与CBC模式的安全实践

对称加密算法是加密领域中最常见的一类算法,它的核心思想是加密和解密使用相同的密钥。对称加密的优势在于其算法速度较快,适合于大规模数据的加密,广泛应用于文件加密、数据传输等领域。

2025-01-06 20:24:15 1812

原创 加密算法分类与介绍:保障信息安全的核心技术

随着信息化时代的到来,数据的安全性变得至关重要。在这个背景下,加密算法作为保护数据隐私和防止信息泄露的关键技术,广泛应用于网络通信、数据存储、金融支付等各个领域。加密算法的核心功能是将明文信息通过特定的算法转化为密文,只有掌握密钥的合法用户才能将密文解密为原始明文。

2025-01-04 20:37:44 1704

原创 深入解析希尔排序:原理、实现与优化

希尔排序(Shell Sort)是一种基于插入排序的排序算法,其改进在于通过分组(也叫增量)的方式来减少数据移动的次数,从而提高了排序的效率。希尔排序的基本思想是将待排序的序列根据一定的增量分成若干组,然后分别对每组元素进行插入排序,随着增量逐渐减小,直到增量为1,此时便完成了整个排序过程。

2025-01-03 14:59:51 975

原创 深度解析基数排序:Java 实现与性能优化

基数排序是一个高效的排序算法,尤其适用于排序大规模数据,特别是在数据范围有限的情况下。通过对每一位的排序,基数排序可以显著提高排序效率。在实际应用中,如果数据是整数类型且范围不大,基数排序通常能提供优于传统比较排序(如快速排序、归并排序等)的性能。希望本文通过简单的代码示例和解析,能帮助大家更好地理解基数排序的原理和实现方法。在实际的应用中,选择合适的排序算法对于提升程序性能至关重要。

2025-01-03 11:54:35 744

原创 从零开始学桶排序:Java 示例与优化建议

桶排序(Bucket Sort)是一种基于分桶的排序算法,适用于输入数据分布较均匀的场景。它通过将元素分配到不同的“桶”中,然后对每个桶内的元素进行排序(通常使用其他排序算法),最后再将各个桶中的元素按顺序合并起来。桶排序的时间复杂度通常是 O(n + k),其中 n 是待排序元素的个数,k 是桶的数量。接下来,我们将通过 Java 代码实现桶排序算法,并详细解析其原理与应用。

2025-01-02 19:39:11 1137

原创 计数排序详解:Java实现与应用场景

计数排序(Counting Sort)是一种非比较排序算法,适用于对整数或离散范围内的元素进行排序。它的基本思想是通过统计待排序元素出现的频率,然后利用该频率信息对元素进行排序。

2025-01-02 12:09:10 989

原创 堆排序基础与实践:如何在Java中实现堆排序

堆排序(Heap Sort)是一种基于堆数据结构的排序算法。堆是一种特殊的完全二叉树,堆排序利用堆的性质通过一系列操作将数组元素按升序或降序排列。堆排序的时间复杂度为 O(n log n),是一种不稳定的排序算法,且其空间复杂度为 O(1),因此在某些场景下非常有用。

2024-12-30 20:13:45 1170

原创 快速排序算法的 Java 实现与性能调优

排序是计算机科学中的基础问题之一,无论是在数据库查询、数据分析,还是在日常编程中,排序算法的选择都对性能有着重要的影响。快速排序(Quick Sort) 是最广泛使用的排序算法之一,因其高效的平均时间复杂度和较小的空间复杂度,广泛应用于实际生产环境中。

2024-12-30 12:33:44 1439

原创 插入排序解析:时间复杂度、空间复杂度与优化策略

在众多经典排序算法中,插入排序以其简单易懂、实现简洁而受到广泛应用。尽管它在大规模数据排序中的效率较低,但在小数据集或数据几乎有序的情况下,插入排序的表现却往往超出预期。因此,了解插入排序的工作原理和适用场景,对于学习排序算法和理解基本的数据结构非常重要。

2024-12-27 19:20:29 1247

原创 深入解析归并排序:高效稳定的归并排序算法

归并排序(Merge Sort)是经典的分治法(Divide and Conquer)排序算法之一。它由约翰·冯·诺依曼于1945年提出,并以其稳定性和较优的时间复杂度在众多排序算法中脱颖而出。虽然归并排序在空间上相对较为消耗,但在处理大规模数据时表现出色,是一种非常重要的排序方法。

2024-12-27 19:14:46 1172

原创 选择排序:简单算法的实现与优化探索

选择排序是一种简单直观的排序算法。它的基本思想是每次从未排序的部分中选择最小(或最大)元素,将其放到已排序部分的末尾。尽管选择排序的时间复杂度较高,但其实现简洁,适合小规模数据的排序。

2024-12-25 13:19:35 604

【人工智能训练师】职业技能鉴定题库:涵盖职业道德、数据处理、模型训练与部署的标准化试题解析

内容概要:本文档为《人工智能训练师三级题库四》,包含114道题目,涵盖单选题、多选题和判断题,内容涉及职业道德、信息技术基础、人工智能训练、数据处理、模型训练与部署、安全性分析、业务流程优化、人机交互设计等多个领域。题目结合理论与实践,重点考查人工智能训练师在数据标注、特征提取、模型评估、系统监控、隐私保护等方面的专业知识与应用能力,同时强调职业操守、数据安全与流程优化意识。; 适合人群:具备一定人工智能基础知识,正在备考人工智能训练师三级认证的从业人员或学习者,尤其适合从事数据处理、模型训练、业务流程优化等相关工作的技术人员;; 使用场景及目标:①用于人工智能训练师职业技能等级考试的复习与自测;②帮助学习者掌握AI训练全流程中的关键技术点,如数据清洗、特征工程、模型部署、安全性测试等;③提升对职业道德、数据隐私、业务流程管理等非技术要素的理解与重视; 阅读建议:建议按照题型分类系统学习,结合每道题的解析深入理解知识点,重点关注高频考点如数据脱敏、模型评估方法、业务流程优化策略、异常值处理等,并结合实际项目场景进行巩固应用。

2025-12-15

【人工智能训练师职业技能】三级考试题库知识点:数据处理、模型训练与系统设计综合解析

内容概要:本文档为《人工智能训练师三级题库八》,包含单选题、多选题和判断题三种题型,全面覆盖人工智能训练师所需掌握的知识点。内容涉及职业道德与职业守则、数据处理与采集、模型训练与评估、自然语言处理、知识表示、算法可解释性、系统集成设计、人机交互设计等多个方面。重点强调数据安全、隐私保护、知识产权、模型泛化能力、异常值处理、交叉验证、实时数据处理技术、分布式训练框架等核心技术概念,并对常用工具如Python的pandas库、NumPy、TensorFlow、Axure RP、Sketch等的应用进行了考查。同时,题目解析详细,帮助理解各项技术原理与实践要求。; 适合人群:准备参加人工智能训练师三级职业技能等级认定的考生,以及从事AI数据处理、模型训练、算法开发等相关工作的初级技术人员;具备一定AI基础知识和实践经验的学习者。; 使用场景及目标:①用于备考人工智能训练师三级认证考试,系统复习核心知识点;②帮助从业者巩固数据处理、模型训练、系统设计等方面的理论基础和技术能力;③指导实际工作中数据质量把控、模型调优、伦理合规等问题的解决。; 阅读建议:建议结合题目与解析进行系统学习,重点关注高频考点如数据预处理、模型评估、职业道德、工具使用等;对于错题应深入理解解析内容,联系实际应用场景加深记忆;可配合实操练习提升对pandas、NumPy、TensorFlow等工具的理解与运用。

2025-12-15

【人工智能训练】三级考试核心知识点解析:涵盖数据处理、模型训练与部署及伦理合规性综合能力评估体系设计

内容概要:本文档是一份人工智能训练师三级考试的题库,涵盖单选题、多选题和判断题三种题型,内容涉及人工智能训练师的职业素质、数据处理、模型训练与部署、算法验证、数据抓取与清洗、容器化技术、推荐系统、计算机视觉、业务流程分析、用户体验设计等多个专业知识领域。题目配有答案及详细解析,系统性地展示了人工智能训练师所需掌握的核心技能与理论知识。; 适合人群:准备参加人工智能训练师职业技能等级认证考试的从业人员,以及从事AI模型训练、数据处理、算法应用等相关工作的初、中级技术人员。; 使用场景及目标:①用于备考复习,帮助考生理解考试重点与知识点逻辑;②作为日常学习参考资料,提升在数据预处理、模型部署、自动化标注、交叉验证等方面的技术实践能力;③辅助培训讲师设计课程内容与考核试题。; 阅读建议:建议结合题目解析深入理解每个知识点背后的原理,尤其关注数据清洗、模型评估、隐私保护、容器化部署等高频考点,同时可通过错题整理强化薄弱环节,提升综合应用能力。

2025-12-15

【人工智能训练】三级考试题库核心知识点:职业道德、数据处理、模型训练与评估、系统设计及用户研究方法论综合解析

内容概要:本文档为《人工智能训练师三级题库六》,包含单选题、多选题和判断题三种题型,全面覆盖人工智能训练师所需掌握的知识点。主要内容包括职业道德(如隐私保护、保密原则)、数据处理技术(如数据清洗、特征选择、噪声处理)、机器学习流程(如模型选择、训练集/验证集/测试集划分)、常用工具与编程语言(如Python、Excel宏、R语言)、人工智能应用(如智能推荐、生物识别、知识图谱)以及测试与评估方法(如黑盒测试、日志分析、公平性测试)等。题目配有正确答案及详细解析,有助于理解核心概念和技术要点。; 适合人群:准备参加人工智能训练师职业技能等级认证考试的人员,具备一定AI基础知识和实践经验的初、中级技术人员。; 使用场景及目标:①用于系统复习人工智能训练相关知识点,查漏补缺;②帮助考生熟悉考试题型与出题逻辑,提升应试能力;③作为日常学习参考资料,深化对数据处理、模型训练、伦理规范等内容的理解与应用。; 阅读建议:建议结合实际项目经验逐题研读,重点关注错题解析,强化对关键概念(如特征选择方法、数据预处理步骤、激活函数作用等)的理解,并配合动手实践加深记忆。

2025-12-15

人工智能基于题库的知识体系构建:三级训练师考试核心考点与数据处理技术应用解析

内容概要:本文档为《人工智能训练师三级题库五》,包含111道涵盖单选、多选和判断题的试题,内容聚焦人工智能训练师所需掌握的核心知识与技能,涉及职业道德、数据采集与处理、特征工程、模型评估、算法部署、智能解决方案设计等多个方面。题目结合理论与实践,重点考察数据质量控制、工具应用(如Pandas、NumPy)、机器学习方法(如随机森林、集成学习)、超参数调优、容器化技术与虚拟机区别等关键技术点,并强调法律伦理、数据可追溯性、产品维护与用户测试等实际应用场景。; 适合人群:准备参加人工智能训练师三级认证考试的从业人员,具备一定AI基础知识和实践经验的技术人员;初级至中级人工智能训练师、数据分析师及相关岗位从业者。; 使用场景及目标:①用于备考人工智能训练师职业技能等级考试,强化对核心知识点的理解与记忆;②作为日常学习与能力提升的参考资料,巩固数据处理、模型优化、智能系统设计等关键技能;③辅助培训讲师设计课程内容与考核题目。; 阅读建议:建议结合官方教材系统复习,针对错题深入理解解析内容,注重区分易混淆概念(如数据预处理与探索性分析、容器化与虚拟机差异等),并在实际项目中应用相关方法以加深掌握。

2025-12-15

人工智能三级技能认证题库:职业道德、数据处理与模型训练综合知识考核

内容概要:本文档为《人工智能训练师三级题库三》,包含114道题目,涵盖单选题、多选题和判断题三种类型,内容涉及职业道德、职业守则、操作系统使用(如Windows小工具、Excel操作)、网络接入规范、著作权法、数据处理(数据清洗、数据集成、数据标注)、人工智能核心技术(如卷积神经网络、生成对抗网络、关联规则学习、文本分析)、模型训练与评估、算法优化、人机交互系统、增强现实(AR)技术应用、性能监控与测试等多个方面。题目配有答案和详细解析,旨在帮助人工智能训练师备考职业技能认证,全面掌握理论知识与实践要点。; 适合人群:准备参加人工智能训练师三级职业技能等级认定的从业人员,具备一定人工智能基础知识和技术背景的初、中级技术人员。; 使用场景及目标:①用于系统复习人工智能训练师所需掌握的知识体系;②强化对数据处理、模型训练、算法评估等核心技能的理解;③熟悉考试题型与答题思路,提升应试能力;④辅助培训机构开展教学与测评工作。; 阅读建议:建议结合实际工作场景理解题目背后的原理,重点关注高频考点如数据预处理、模型评估指标、职业道德规范、合规性要求等内容,并通过反复练习巩固知识点,同时参考解析深入理解错误原因,全面提升理论水平与实践判断能力。

2025-12-15

人工智能训练师职业技能题库:涵盖数据处理、模型评估与人机交互的综合知识体系设计

内容概要:本文档为《人工智能训练师三级题库二》,包含114道题目,涵盖单选题、多选题和判断题,内容涉及职业道德、操作系统基础、Excel数据处理、网络安全法、ETL工具原理、数据清洗与预处理、机器学习流程、模型评估指标、特征工程、数据标注、算法测试与优化、时间序列分析、自然语言处理、语音交互设计、产品功能规划、云服务集成、人机交互等多个领域,重点考察人工智能训练师所需掌握的基础理论与实践技能。; 适合人群:准备参加人工智能训练师三级职业技能等级认定的从业人员,具备一定数据分析、机器学习基础知识的技术人员;也可供相关领域初学者参考学习。; 使用场景及目标:①用于备考人工智能训练师三级认证考试,系统复习核心知识点;②帮助从业者巩固数据处理、模型调试、算法评估等关键技能;③作为日常学习资料提升对AI训练全流程的理解与应用能力。; 阅读建议:建议结合官方教材系统学习各章节内容,针对错题进行归纳总结,重点关注高频考点如ETL流程、模型评估指标、特征工程、数据清洗步骤、职业道德规范等,并通过反复练习加深理解,提升应试能力与实战水平。

2025-12-15

人工智能面向三级认证的训练师题库:涵盖职业道德、数据治理、模型优化与用户需求分析的综合知识体系设计

内容概要:本文档为《人工智能训练师三级题库一》,涵盖职业道德、劳动法规、数据治理、人工智能技术基础等多个方面的单选题、多选题和判断题,共计114道题目。内容涉及职业行为规范、系统维护、数据处理、模型训练监控、特征工程、用户需求分析、合规性测试等知识点,并配有详细解析,旨在帮助人工智能训练师掌握职业技能标准及相关理论知识。; 适合人群:准备参加人工智能训练师三级职业资格认证考试的人员,以及从事AI训练、数据处理、模型优化等相关工作的初、中级技术人员。; 使用场景及目标:①用于备考复习,系统掌握人工智能训练师所需的基础知识与实操技能;②帮助理解数据标注、特征工程、模型监控、用户反馈集成等关键环节的技术要点与行业规范;③提升对数据治理、安全合规、人机交互设计等领域专业认知。; 阅读建议:建议结合题目与解析进行逐项学习,重点关注高频考点如数据质量控制、模型评估指标、职业道德规范等内容,并通过错题回顾强化薄弱环节,同时可配合实际项目加深理解。

2025-12-15

PPT模板序列二:深色科技风格,专业感强,突出技术架构与方案,适合技术评审与规划

模板结构最全面,涵盖“工作回顾-成果展示-问题分析-经验总结-未来规划”完整闭环。预设多种逻辑图表,适合对周期工作进行系统性、结构化的总结与展望。

2025-12-12

PPT模板序列四:深色科技风格,专业感强,突出技术架构与方案,适合技术评审与规划

模板结构最全面,涵盖“工作回顾-成果展示-问题分析-经验总结-未来规划”完整闭环。预设多种逻辑图表,适合对周期工作进行系统性、结构化的总结与展望。

2025-12-12

PPT模板序列三:深色科技风格,专业感强,突出技术架构与方案,适合技术评审与规划

模板结构最全面,涵盖“工作回顾-成果展示-问题分析-经验总结-未来规划”完整闭环。预设多种逻辑图表,适合对周期工作进行系统性、结构化的总结与展望。

2025-12-12

PPT模板序列一:深色科技风格,专业感强,突出技术架构与方案,适合技术评审与规划

模板结构最全面,涵盖“工作回顾-成果展示-问题分析-经验总结-未来规划”完整闭环。预设多种逻辑图表,适合对周期工作进行系统性、结构化的总结与展望。

2025-12-12

aspose-pdf-24.11 的 Java Jar 包资源文件分享

文件名: aspose-pdf-24.11.jar 适用语言: Java 功能: 1.支持 PDF 转 Word、PPT、HTML、图片、TXT、Excel 等多种格式。 2.无水印,无页数限制。 3.功能强大,学习曲线低,易于掌握。

2024-12-08

使用dom4j读取xml四种方法

使用dom4j读取xml四种方法,希望对各位朋友有所帮助

2015-03-12

123个微信小程序源码

包含经典2048、摇色子等

2022-05-21

EXT必需文件

包含extjs开发必需的三个文件:ext-all.css,ext-base.js,ext-all.js.

2016-04-06

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除