8B 端侧小模型 | 能力全面对标GPT-4V!单图、多图、视频理解端侧三冠王,这个国产AI开源项目火爆全网

        这两天, Github上一个 国产开源AI 项目杀疯了!一开源就登上了 Github Trending 榜前列,一天就获得将近600 star。

        这个项目就是国内大模型四小龙之一面壁智能最新大打造的面壁「小钢炮」 MiniCPM-V 2.6 。它再次刷新端侧多模态天花板,仅8B参数,单图、多图、视频理解全面超越 GPT-4V !
更有多项功能首次上「端」:小钢炮一口气将实时视频理解、多图联合理解、多图ICL等能力首次搬上端侧多模态模型。
        它端侧友好,量化后端侧 6G 内存即可使用;端侧推理速度高达 18 tokens/s,相比上代模型快 33%。并且发布即支持 llama.cpp、ollama、vllm 推理;且支持多种语言。

➤MiniCPM-V 2.6开源地址:
GitHub🔗 https://github.com/OpenBMB/MiniCPM-V
HuggingFace: 🔗 https://huggingface.co/openbmb/MiniCPM-V-2_6

➤llama.cpp、ollama、vllm 部署教程地址:
🔗https://modelbest.feishu.cn/docx/Duptdntfro2Clfx2DzuczHxAnhc

➤ MiniCPM 系列开源地址:
🔗https://github.com/OpenBMB/MiniCPM

这么惊艳的实时视频理解功能之间震惊掉了老外开发者的下巴,一下子就在全球开源社区爆火

 

 

下面,让我们一同看下它的能力!

单图、多图、视频理解三项 SOTA

指20B以下、端侧模型SOTA

以小博大,是端侧模型的核心竞争力。
仅 8B 参数,新一代 MiniCPM-V 2.6 不仅再一次取得了媲美 GPT-4V 的综合性能, 还首次作为端侧 AI 模型,掀开单图、多图、视频理解三项多模态核心能力全面超越 GPT-4V 之新格局,且均实现 20B 参数以下模型性能 SOTA。

在 MiniCPM-V 2.6 的知识压缩率方面,我们发现,MiniCPM-V 2.6 体现出极致的高效,取得了两倍于 GPT-4o 的最高多模态大模型像素密度(Token Density)

Token Density =   编码像素数量  / 视觉 token 数量,是指单个 token 承载的像素密度即图像信息密度,直接决定了多模态模型实际的运行效率,数值越大,模型运

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值