HDU 5073 Galaxy (2014鞍山现场赛D题)

题目链接:HDU 5073 Galaxy

题意:在一维的坐标系里,给出N个点坐标,转动K个点,使转动后这个星系的的惯性最小(根据题意惯性最小也就是 求所有星星到星系中心的距离最小,这个可以理解成方差最小)。求最小的惯性。


思路:

先对序列排序,再求出算N-K个点惯性的递推式。

以三个为例:


预处理是 平均数和各项的平方和,

注意:n==k的特判


AC代码:

#include <stdio.h>
#include <algorithm>
using namespace std;

double pf[50010],sum[50010];
double a[50010];
int main()
{
    int t;
    int n,k,i;
    double ave,minans,tempfc;
    scanf("%d",&t);
    while(t--)
    {
        memset(pf,0,sizeof pf);
        memset(sum,0,sizeof sum);
        scanf("%d %d",&n,&k);
        for(i=0;i<n;i++)
            scanf("%lf",&a[i]);
        if(n==k)
        {
            printf("%lf\n",0);
            continue;
        }
        sort(a,a+n);
        pf[0]=a[0]*a[0],sum[0]=a[0];
        for(i=1;i<n;i++)
        {
            pf[i]=pf[i-1]+a[i]*a[i];
            sum[i]=+sum[i-1]+a[i];
        }
        //以上预处理
        ave=sum[n-k-1]*1.0/(n-k);
        minans=pf[n-k-1]-2*ave*sum[n-k-1]+(n-k)*ave*ave;
        for(i=n-k;i<n;i++)
        {
            ave=(sum[i]-sum[i-(n-k)])/(n-k);
            tempfc=(pf[i]-pf[i-(n-k)])-2*ave*(sum[i]-sum[i-(n-k)])+(n-k)*ave*ave;
            minans=min(minans,tempfc);
        }
        printf("%lf\n",minans);
    }
    return 0;
}
/*
10
3 2
-1 0 1
4 2
-2 -1 1 2
3 3
-1 0 1
*/



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值