题目链接:HDU 5172 GTY's gay friends
题意:给出一串序列,询问[l,r]区间里是否存在1~l-r+1的一个排列。
思路:1~l-r+1的一个排列 等价于 [l,r]中元素互不相同且[l,r]区间和等于(1+len)*len/2(len=l-r+1)。
区间和可以用前缀和来处理。
元素互不相同,记录位置i上a[i]上次出现的位置记做pre[i],再用线段树来维护区间的pre最大值,若最大值小于l说明[l,r]中元素互不相同。(区间[l,r]中的每个pre[i]小于l说明区间元素互不相同,转化为区间pre的最大值小于l区间元素互不相同)
AC代码:
#include <stdio.h>
#include <string.h>
const int maxn=1000010;
struct node{
int l,r;
int max;
int mid(){
return (l+r)>>1;
}
};
struct node tree[maxn<<2];
int sum[maxn],pre[maxn],pos[maxn];//pos[i] 数字i出现的最大位置。
//pre[i]位置i上a[i]上次出现的位置
int Max(int a,int b){
if(a>b) return a;
return b;
}
void PushUp(int rt){
tree[rt].max=Max(tree[rt<<1].max,tree[rt<<1|1].max);
}
void build(int l,int r,int rt){
tree[rt].l=l;
tree[rt].r=r;
if(l==r){
tree[rt].max=pre[l];
return ;
}
int m=tree[rt].mid();
build(l,m,rt<<1);
build(m+1,r,rt<<1|1);
PushUp(rt);
}
int Query(int L,int R,int rt){
if(L<=tree[rt].l && tree[rt].r<=R){
return tree[rt].max;
}
int ret=-1;
int m=tree[rt].mid();
if(R<=m) ret=Max(ret,Query(L,R,rt<<1));
else if(L>m) ret=Max(ret,Query(L,R,rt<<1|1));
else {
ret=Max(ret,Query(L,R,rt<<1));
ret=Max(ret,Query(L,R,rt<<1|1));
}
return ret;
}
int main()
{
int n,m,i,tmp,x;
while(scanf("%d%d",&n,&m)!=EOF){
memset(sum,0,sizeof sum);
memset(pre,0,sizeof pre);
memset(pos,0,sizeof pos);
for(i=1;i<=n;i++){
scanf("%d",&x);
sum[i]=sum[i-1]+x;
pre[i]=pos[x];
pos[x]=i;
}
build(1,n,1);
int a,b;
while(m--){
scanf("%d%d",&a,&b);
int len=b-a+1;
int s=sum[b]-sum[a-1];
int ok=Query(a,b,1);
if(s==(len+1)*len/2 && ok<a) puts("YES");
else puts("NO");
}
}
return 0;
}