0408-两数之和&


class Solution {
public:
    
    //
    // The implementation as below is bit tricky. but not difficult to understand
    //
    //  1) Traverse the array one by one
    //  2) just put the `target - num[i]`(not `num[i]`) into the map
    //     so, when we checking the next num[i], if we found it is exisited in the map.
    //     which means we found the second one.
    //      
    vector<int> twoSum(vector<int> &numbers, int target) {
        unordered_map<int, int> m;
        vector<int> result;
        for(int i=0; i<numbers.size(); i++){
            // not found the second one
            if (m.find(numbers[i])==m.end() ) { 
                // store the first one poisition into the second one's key
                m[target - numbers[i]] = i; 
            }else { 
                // found the second one
                result.push_back(m[numbers[i]]+1);
                result.push_back(i+1);
                break;
            }
        }
        return result;
    }
};

map和unordered_map的比较
map:

优点: 
有序性,这是map结构最大的优点,其元素的有序性在很多应用中都会简化很多的操作 
map底层是以红黑树的数据结构实现的,支持的搜索,插入,删除都是O(logn)的时间复杂度。

缺点: 
空间占用率高,因为map内部实现了红黑树,虽然提高了运行效率,但是因为每一个节点都需要额外保存父节点、孩子节点和红/黑性质,使得每一个节点都占用大量的空间

unordered_map:

优点: 因为内部实现了哈希表,因此其查找速度非常的快 
缺点: 哈希表的建立比较耗费时间 
适用处:对于查找问题,unordered_map会更加高效一些,因此遇到查找问题,常会考虑一下用unordered_map

内容概要:本文档提供了三种神经网络控制器(NNPC、MRCNARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模fg函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程评估标准,这对于进一步研究应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值