hdu 1394 Minimum Inversion Number 线段树

又学会了一种线段树写法,感觉比以前学的简单了很多~

时空隧道(题目链接)

题目是说,给一个数字n,然后有n个数0--n-1,顺序是打乱的,问操作

a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)

中,得到的逆序数最小是多少。

和POJ 的一道题差不多的感觉,详情戳这里

因为数组在动,如果每次得到一个新的数组,我们都建一次树,更新一次,那么时间复杂度还是挺高的。

然后,你把逆序数写出来,会发现, 当把第一个数x,放到数组最后去时,x 的逆序数变为0,大于x的数,逆序数统统+1

然后就得出了公式 sum=sum - 2 * x + n - 1 (sum:初始数组的逆序数。) 好吧,描述能力一直差,希望各位看官能看懂...

代码如下(依旧写得挫):

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#define LL __int64
#define ls v<<1
#define rs v<<1|1
//#define LOCAL
using namespace std;
const int INF=0x3ffffff;
const int MAXN=5010;
int n,ans,sum,a[MAXN];
int tree[MAXN<<2];
vector<int>vec;
void Push_Up(int v) //更新父节点
{
	tree[v]=tree[ls]+tree[rs];
	return ;
}
void Build_Tree(int l,int r,int v)
{
	if(l==r){
		tree[v]=0;
		return ;
	}
	int mid=(l+r)>>1;
	Build_Tree(l,mid,ls);
	Build_Tree(mid+1,r,rs);
	Push_Up(v);
}
void update(int p,int val,int l,int r,int v)
{
	if(l==r){
		tree[v]+=val;
		return ;
	}
	int mid=(l+r)>>1;
	if(p<=mid) update(p,val,l,mid,ls);
	else if(p>mid) update(p,val,mid+1,r,rs);
	Push_Up(v);
}
int query(int ll,int rr,int l,int r,int v)
{
	int rt=0;
	int mid=(l+r)>>1;
	if(ll<=l && r<=rr) return tree[v];
	if(ll<=mid) rt+=query(ll,rr,l,mid,ls);
	if(rr>mid)  rt+=query(ll,rr,mid+1,r,rs);
	return rt;
}
void Init()
{
	sum=(n-1)*n/2;
	return ;
}

int main()
{
#ifdef LOCAL
	freopen("in.txt","r",stdin);
	freopen("out.txt","w",stdout);
#endif
	int tmp;
	while(~scanf("%d",&n))
	{
		Build_Tree(1,n,1);
		Init();
		for(int i=0;i<n;i++)
		{
			scanf("%d",&tmp);
			a[i]=tmp;
			sum-=query(1,tmp+1,1,n,1);
			update(1+tmp,1,1,n,1);
		}
		ans=sum;
		for(int i=0;i<n;i++)
		{
			sum=sum-2*a[i]-1+n;
			ans=min(ans,sum);
		}
		printf("%d\n",ans);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值