又学会了一种线段树写法,感觉比以前学的简单了很多~
题目是说,给一个数字n,然后有n个数0--n-1,顺序是打乱的,问操作
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
中,得到的逆序数最小是多少。
和POJ 的一道题差不多的感觉,详情戳这里
因为数组在动,如果每次得到一个新的数组,我们都建一次树,更新一次,那么时间复杂度还是挺高的。
然后,你把逆序数写出来,会发现, 当把第一个数x,放到数组最后去时,x 的逆序数变为0,大于x的数,逆序数统统+1
然后就得出了公式 sum=sum - 2 * x + n - 1 (sum:初始数组的逆序数。) 好吧,描述能力一直差,希望各位看官能看懂...
代码如下(依旧写得挫):
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#define LL __int64
#define ls v<<1
#define rs v<<1|1
//#define LOCAL
using namespace std;
const int INF=0x3ffffff;
const int MAXN=5010;
int n,ans,sum,a[MAXN];
int tree[MAXN<<2];
vector<int>vec;
void Push_Up(int v) //更新父节点
{
tree[v]=tree[ls]+tree[rs];
return ;
}
void Build_Tree(int l,int r,int v)
{
if(l==r){
tree[v]=0;
return ;
}
int mid=(l+r)>>1;
Build_Tree(l,mid,ls);
Build_Tree(mid+1,r,rs);
Push_Up(v);
}
void update(int p,int val,int l,int r,int v)
{
if(l==r){
tree[v]+=val;
return ;
}
int mid=(l+r)>>1;
if(p<=mid) update(p,val,l,mid,ls);
else if(p>mid) update(p,val,mid+1,r,rs);
Push_Up(v);
}
int query(int ll,int rr,int l,int r,int v)
{
int rt=0;
int mid=(l+r)>>1;
if(ll<=l && r<=rr) return tree[v];
if(ll<=mid) rt+=query(ll,rr,l,mid,ls);
if(rr>mid) rt+=query(ll,rr,mid+1,r,rs);
return rt;
}
void Init()
{
sum=(n-1)*n/2;
return ;
}
int main()
{
#ifdef LOCAL
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
int tmp;
while(~scanf("%d",&n))
{
Build_Tree(1,n,1);
Init();
for(int i=0;i<n;i++)
{
scanf("%d",&tmp);
a[i]=tmp;
sum-=query(1,tmp+1,1,n,1);
update(1+tmp,1,1,n,1);
}
ans=sum;
for(int i=0;i<n;i++)
{
sum=sum-2*a[i]-1+n;
ans=min(ans,sum);
}
printf("%d\n",ans);
}
return 0;
}