题目:
给定一个数字n,求解出所有和为n的整数组合,要求组合按照递增方式展示,而且唯一。
分析:
最初看到这个题,没有什么特别好的思路,后来看了下别人的帖子,其实问题也没那么难,采用递归的方式进行求解,比如我们需要计算和为4的所有组合,我们首先将小于等于4的所有数字列出来
1,2,3,4
首先选取第一个数字,我们选取1,这时候,余下的和为(4-1),我们继续从1,2,3,4中选择,如此递归下去
第二次,我们选择1后面的数字,也就是2,作为第一个数字,余下的和为(4-2),我们继续从2,3,4中选择和为2的组合,注意,这里是从2,3,4中选取,而不是1,2,3,4中选取,如果采用后者方式,我们得到的结果会存在重复组合,比如1,1,2和2,1,1。
代码如下:
- /*
- * combinationForNumber.cpp
- *
- * Created on: 2012-10-19
- * Author: happier
- */
- #include <iostream>
- #include <string.h>
- #include <cstdio>
- #include <cstdlib>
- using namespace std;
- #define MAX_VALUE 20
- int next[MAX_VALUE] = { 0 }; //可以理解成一个链表,next[i]表示i数后面跟着的数字
- /*
- * 递归进行求解
- * @nSum 目标和
- * @pData 保存已经存在的数字
- * @nDepth 记录当前已经保存数据的个数
- */
- void SegNum(int nSum, int* pData, int nDepth)
- {
- if (nSum < 0)
- return;
- //如果已经符合要求,开始输出
- if (nSum == 0)
- {
- for (int j = 0; j < nDepth; j++)
- cout << pData[j] << " ";
- cout << endl;
- return;
- }
- //这里有一个小trick,如果要求呈现递增,采用第一种赋值方式
- //如果可以是重复的,即非递增方式,采用第二种赋值
- int i = (nDepth == 0 ? next[0] : pData[nDepth - 1]);
- //int i = next[0];
- for (; i <= nSum;)
- {
- pData[nDepth++] = i;
- SegNum(nSum - i, pData, nDepth);
- nDepth--; //递归完成后,将原来的数据弹出来,并且去链表中的下一个数字
- i = next[i];
- }
- return ;
- }
- void ShowResult(int array[], int nLen)
- {
- next[0] = array[0];
- int i = 0;
- for (; i < nLen - 1; i++)
- next[array[i]] = array[i + 1]; //下一个可选数字大小
- next[array[i]] = array[i] + 1; //next[MAX_VALUE]大于MAX_VALUE,一个小trick,避免了很多比较
- int* pData = new int[MAX_VALUE];
- SegNum(MAX_VALUE, pData, 0);
- delete[] pData;
- }
- int main()
- {
- int* array = new int[MAX_VALUE];
- for (int i = 0; i < MAX_VALUE; i++)
- {
- array[i] = i + 1;
- }
- //找零钱测试
- ShowResult(array, MAX_VALUE);
- //system("pause");
- return 0;
- }
代码转自: http://blog.csdn.net/wumuzi520/article/details/8046350 ,我添加了一些注释,注意在这个代码中,作者用next[]数组来模拟链表
总结:
如果没有很好的思路,我们采用递归方式,分而治之,将问题一步一步减小。