30. [M23 ] (J. Binet, 1812.) 不使用归纳法,证明等式 
证:
这个公式是一个非常重要且基础的通用公式,稍后可以看到它的一系列推论,用处很大。
首先根据正文里公式 (4),用于和式乘积的分配律 ,我们有
,
同理有
上下两个等式相减,得到
= (
时和式为零)
= (第二个和式中 j 与 k 互换)
=
= 由此等式
得证。
一个重要的特例是:当
为任意复数时,我们令
,就得到等式 
证明:等式左边
等式右边
=
=
注: 与
互为共轭,
与
也是互为共轭关系。
所有的 项都是非负的,所以根据 Binet 公式就可以推出著名的柯西-施瓦茨(Cauchy-Schwarz) 不等式
。
31. 【M20] 利用 Binet 公式将和式
表示为由
组成的式子。
解:
在 Binet 公式 中,令
,就得到
=
当 和
同为单调递增数列时,即
且
时,对任何 j, k, 只要满足
,都有
,这样就可以推导出
,这就是著名的切比雪夫单调不等式(Chebyshev's monotonic inquality)。
33. [M30] One evening Dr. Matrix discovered some formulas that might even be classed as more remarkable than those of exercise 20:
Prove that these formulas are a special case of a general law; let be distinct numbers, and show that
证:
对于 的情况的证明如下:
可改写为两个和式的差:
,每个和式都和要证明的和式是同样的形式,但都只包含 n-1 项(第一个和式少了 j=n-1 时那项,第二个少了 j=n 时那项),这就启发我们对 n 使用数学归纳法来证明。
Base case: n = 3 时,根据前面的公式显然有
要证明的公式成立。
当 时,由前面
可以改写为两个同样形式的 n-1 项和式的差,显然可以从 n-1 项时成立推导出 n 项时公式成立。
最后是比较麻烦的 r = n 时的情况。
由于对任意一个特定的 j() ,
都等于零,因此有等式
,其中的
是关于
的最高次幂为
的多项式。这样可以得出
而根据前面已证明的结论,
, (因为对所有
,
的值都为零。)而
,这样就证明了 r=n 时的情况:
。
34. [M25] 证明如下等式成立:
假定其中
且
为任意实数。例如,当
且
时,
证:
和33题的公式对照一下就可以找出类似的模式:令 ,分子
,其中的
是最高次幂为
的关于
的多项式,套用 33 题的公式证明过程,
,这样就可以直接得出