十一、集成学习算法简介-随机森林预测案例

python编程快速上手(持续更新中…)


5.1 集成学习算法简介

1 什么是集成学习

在这里插入图片描述
集成学习通过建立几个模型来解决单一预测问题。它的工作原理是生成多个分类器/模型,各自独立地学习和作出预测。这些预测最后结合成组合预测,因此优于任何一个单分类的做出预测

2 复习:机器学习的两个核心任务

在这里插入图片描述

3 集成学习中boosting和Bagging

在这里插入图片描述
只要单分类器的表现不太差,集成学习的结果总是要好于单分类器的.

5.2 Bagging

概述

在这里插入图片描述

1 Bagging集成原理

目标:把下面的圈和方块进行分类
在这里插入图片描述
实现过程:
1.采样不同数据集
在这里插入图片描述
2.训练分类器
在这里插入图片描述
3.平权投票,获取最终结果
在这里插入图片描述
4.主要实现过程小结
在这里插入图片描述

2 随机森林构造过程

在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。
随机森林 = Bagging + 决策树
在这里插入图片描述
例如, 如果你训练了5个树, 其中有4个树的结果是True, 1个树的结果是False, 那么最终投票结果就是True
随机森林够造过程中的关键步骤(用N来表示训练用例(样本)的个数,M表示特征数目)
​ 1)一次随机选出一个样本,有放回的抽样,重复N次(有可能出现重复的样本)
​ 2)随机去选出m个特征, m <<M,建立决策树

思考
1.为什么要随机抽样训练集?  
如果不进行随机抽样,每棵树的训练集都一样,那么最终训练出的树分类结果也是完全一样的

2.为什么要有放回地抽样?
如果不是有放回的抽样,那么每棵树的训练样本都是不同的,都是没有交集的,这样每棵树都是“有偏的”,都是绝对“片面的”(当然这样说可能不对),也就是说每棵树训练出来都是有很大的差异的;而随机森林最后分类取决于多棵树(弱分类器)的投票表决。

3 随机森林api介绍

sklearn.ensemble.RandomForestClassifier(n_estimators=10, criterion=’gini’, max_depth=None, bootstrap=True, random_state=None, min_samples_split=2)

  • n_estimators:integer,optional(default = 10)森林里的树木数量120,200,300,500,800,1200
  • Criterion:string,可选(default =“gini”)分割特征的测量方法
  • max_depth:integer或None,可选(默认=无)树的最大深度 5,8,15,25,30
  • max_features="auto”,每个决策树的最大特征数量

If “auto”, then max_features=sqrt(n_features).
If “sqrt”, then max_features=sqrt(n_features)(same as “auto”).
If “log2”, then max_features=log2(n_features).
If None, then max_features=n_features.

  • bootstrap:boolean,optional(default = True)是否在构建树时使用放回抽样
  • min_samples_split:节点划分最少样本数
  • min_samples_leaf:叶子节点的最小样本数

超参数:n_estimator, max_depth, min_samples_split,min_samples_leaf

4 随机森林预测案例

  • 导入

from sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.ensemble import RandomForestClassifier

  • 实例化随机森林
# 机器学习(模型训练)
estimator = RandomForestClassifier()
param_grid = {"n_estimators": [120,200,300,500,800,1200], "max_depth": [5, 8, 15, 25, 30]}
# 使用GridSearchCV进行网格搜索
estimator = GridSearchCV(estimator, param_grid=param_grid, cv=5)
estimator.fit(x_train, y_train)

在这里插入图片描述
注意
随机森林的建立过程
树的深度、树的个数等需要进行超参数调优

5 bagging集成优点

​ Bagging + 决策树/线性回归/逻辑回归/深度学习… = bagging集成学习方法

经过上面方式组成的集成学习方法:
均可在原有算法上提高约2%左右的泛化正确率
简单, 方便, 通用

5.3 Boosting

在这里插入图片描述

1.boosting集成原理

1.1 什么是boosting

在这里插入图片描述
随着学习的积累从弱到强
简而言之:每新加入一个弱学习器,整体能力就会得到提升
代表算法:Adaboost,GBDT,XGBoost

1.2 实现过程:

1.训练第一个学习器
在这里插入图片描述
2.调整数据分布
在这里插入图片描述
3.训练第二个学习器
在这里插入图片描述
4.再次调整数据分布

在这里插入图片描述

5.依次训练学习器,调整数据分布

在这里插入图片描述
6.整体过程实现
在这里插入图片描述
关键点:
如何确认投票权重?
如何调整数据分布?
在这里插入图片描述
AdaBoost的构造过程小结
在这里插入图片描述
bagging集成与boosting集成的区别:
区别一:数据方面
Bagging:对数据进行采样训练;
Boosting:根据前一轮学习结果调整数据的重要性。
区别二:投票方面
Bagging:所有学习器平权投票;
Boosting:对学习器进行加权投票。
区别三:学习顺序
Bagging的学习是并行的,每个学习器没有依赖关系;
Boosting学习是串行,学习有先后顺序。
区别四:主要作用
Bagging主要用于提高泛化性能(解决过拟合,也可以说降低方差)
Boosting主要用于提高训练精度 (解决欠拟合,也可以说降低偏差)

在这里插入图片描述

1.3 api介绍

from sklearn.ensemble import AdaBoostClassifier

2 GBDT(了解)

梯度提升决策树(GBDT Gradient Boosting Decision Tree) 是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案。它在被提出之初就被认为是泛化能力(generalization)较强的算法。近些年更因为被用于搜索排序的机器学习模型而引起大家关注。

GBDT = 梯度下降 + Boosting + 决策树

2.1 梯度的概念(复习)

在这里插入图片描述
在这里插入图片描述

2.2 GBDT执行流程

在这里插入图片描述
如果上式中的hi(x)=决策树模型,则上式就变为:
GBDT = 梯度下降 + Boosting + 决策树

2.3 案例

预测编号5的身高:
在这里插入图片描述
第一步:计算损失函数,并求出第一个预测值:平均值
在这里插入图片描述
第二步:求解划分点:按照年龄

在这里插入图片描述
得出:年龄21为划分点的方差=0.01+0.0025=0.0125

第三步:通过调整后目标值,求解得出h1(x)
左边=-0.275,右边=0.275
在这里插入图片描述
第四步:求解h2(x)

在这里插入图片描述
得出结果:
在这里插入图片描述
编号5身高 = 1.475 + 0.03 + 0.275 = 1.78

2.4 GBDT主要执行思想

1.使用梯度下降法优化代价函数;
2.使用一层决策树作为弱学习器,负梯度作为目标值;
3.利用boosting思想进行集成。

3.XGBoost【了解】

XGBoost= 二阶泰勒展开+boosting+决策树+正则化

  • 面试题:了解XGBoost么,请详细说说它的原理
  • 回答要点:二阶泰勒展开,boosting,决策树,正则化
    • Boosting:XGBoost使用Boosting提升思想对多个弱学习器进行迭代式学习
    • 二阶泰勒展开:每一轮学习中,XGBoost对损失函数进行二阶泰勒展开,使用一阶和二阶梯度进行优化。
    • 决策树:在每一轮学习中,XGBoost使用决策树算法作为弱学习进行优化。
    • 正则化:在优化过程中XGBoost为防止过拟合,在损失函数中加入惩罚项,限制决策树的叶子节点个数以及决策树叶子节点的值。

4 什么是泰勒展开式【拓展】

在这里插入图片描述
泰勒展开越多,计算结果越精确

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
随机森林算法是一种集成学习方法,它通过组合多个决策树模型来提高预测准确性和泛化能力。随机森林模型在许多领域都有广泛的应用案例。以下是一些随机森林算法的应用案例: 1. 金融领域:随机森林可以用于信用评分和风险管理。它可以分析客户的个人信息、历史交易数据等,预测客户的信用状况和风险水平,帮助金融机构做出更准确的决策。 2. 医疗领域:随机森林可以用于疾病诊断和预测。它可以分析患者的医疗记录、病症特征等,帮助医生做出疾病的诊断和预测患者的治疗效果。 3. 商品推荐:随机森林可以用于个性化推荐系统。它可以分析用户的历史购买记录、浏览行为等,预测用户的购买偏好,为用户提供个性化的商品推荐。 4. 图像识别:随机森林可以用于图像分类和目标检测。它可以分析图像的特征、像素值等,识别图像中的物体或场景。 5. 自然语言处理:随机森林可以用于文本分类和情感分析。它可以分析文本的词频、语义等特征,对文本进行分类或判断文本的情感倾向。 综上所述,随机森林算法在金融、医疗、推荐系统、图像识别和自然语言处理等领域都有广泛的应用案例。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [随机森林模型及案例(Python)](https://blog.csdn.net/qq_42433311/article/details/124319618)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [智能算法:Fertilization optimization algorithm (FO)施肥优化算法Matlab](https://download.csdn.net/download/weixin_39168167/88275163)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值