bzoj1601 最小生成树经典建模

42 篇文章 0 订阅
25 篇文章 0 订阅

互测day3的T2,作为送分题出现


首先每个点都有两种决策,从别的点引水或者新建,所以我们可以增加一个超级源点。

然后每个源点向每个点都连边,每条边的边权是在这个点建立水库的费用

然后点之间互相连边,RT即可


最后一次最小生成树就可以了


选这个题的原因我想有很多,这个题编程复杂度几乎是0,思路也不算特别难想,但是对最小生成树的使用技巧又有一定要求,所以个人还是比较喜欢的


#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>

using namespace std;

struct wbysr
{
	int dist,num;
	bool operator < (const wbysr &fuck)const
	 {
	 	return dist>fuck.dist;
	 }
};

int n,i,m,d[10000+4],done[10000+4];

int main()
{
	int num=0,p;
	vector <int>aim[10000+4];
	vector<int>w[10000+4];
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&p);
		aim[0].push_back(i);
		aim[i].push_back(0);
		w[0].push_back(p);
		w[i].push_back(p);
	}

	for(int i=1;i<=n;i++)
		for(int j=1;j<=n;j++)
		{
			scanf("%d",&p);
			if(i!=j)
			{
				aim[i].push_back(j);
				aim[j].push_back(i);
				w[i].push_back(p);
				w[j].push_back(p);
			}
		}
	for(i=1;i<=n;i++)
	  d[i]=0x7fffffff;
	d[0]=0;
	memset(done,0,sizeof(done));
    priority_queue<wbysr> q;
    q.push((wbysr){0,0});
    int ans=0;
    while(!q.empty())
     {
     	wbysr x=q.top();
     	q.pop();
     	int now=x.num;
     	if(done[now])
		  continue;
		ans+=x.dist;
     	done[now]=1;
		num++;
     	for(int k=0;k<aim[now].size();k++)
     	  if(d[aim[now][k]]>w[now][k])
     	   {
     	   	d[aim[now][k]]=w[now][k];
     	   	q.push((wbysr){d[aim[now][k]],aim[now][k]});
     	   }
     }
    //cout<<d[n]<<endl;
    int answer=0;
	for(i=1;i<=n;i++)
	  answer+=d[i];
//	printf("%d\n",num);
	 printf("%d",ans); 
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值