bzoj3714(最小生成树模型+前缀和建图)

对序列求前缀和

其实这题最关键的就是我们只要知道了【a,b】和【b,c】就可以知道了【a,c】

实际上这和两点之间有且仅有一条路径是相似的,由此联想了一个最小生成树模型。

#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
using namespace std;
typedef long long ll;
int n,tot;
int fa[2205];
struct aa
{
	int u,v;
	ll dis;
	bool operator <(const aa &b)const 
	{
		return dis<b.dis;
	}
}bian[2005*2005];
int find(int u)
{
	return u==fa[u]?u:fa[u]=find(fa[u]);
}
int main()
{
	scanf("%d",&n);
	for (int i=0;i<=n;i++) fa[i]=i;
	ll x;
	for (int i=1;i<=n;i++)
	{
		for (int j=i;j<=n;j++)
		{
			scanf("%lld",&x);
			bian[++tot].dis=x;bian[tot].u=i-1;bian[tot].v=j;
		}
	}
	
	sort(bian+1,bian+tot+1);
	ll ans=0,kk=0;
	for (int i=1;i<=tot;i++)
	{
		int fu=find(bian[i].u),fv=find(bian[i].v);
		if (fu!=fv)
		{
			ans+=bian[i].dis;
			fa[fu]=fv;
			kk++;if (kk==n) break;
		}
	}
	printf("%lld",ans);
	return 0;
}


总结

1:对于一些两点之间信息只需要保留一个问题可以考虑用最小生成树

2:善于联想,考虑一些问题之间潜在的联系性,尝试模型的转化。
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值