- 博客(18)
- 收藏
- 关注
原创 最小二乘法
今天在看书的时候遇到了用最小二乘法做线性拟合,多条线性拟合的问题,有点忘了就学习一下子。最小二乘法的核心思想就是求估计值和实际值之间的误差的平方的最小值。找到核心思想了,首先针对单线性拟合的问题,进行数学推导和证明1 拟合直线:y=a+bxy=a+bx 2 有任意观察点(xi,yi)3.误差为Q =yi−(a+bxi)重点是对xi和yi的求和的估计,这个一...
2019-03-18 11:11:02 541
翻译 pytorch中的transform函数
torchvision.transforms是pytorch中的图像预处理包.一般用Compose把多个步骤整合到一起:transforms.Compose([transforms.CenterCrop(10),transforms.ToTensor(),])这样就把两个步骤整合到一起,接下来是transforms中的函数:Resize把给定的图片resize到given size...
2018-12-26 10:15:23 4553 1
转载 (转)docker容器跨服务器的迁移方式export和save
原文地址:http://ju.outofmemory.cn/entry/95273前沿: 这两天把报警平台放在了docker里面跑了,但是宿主机本身性能就不好,所以导致mongodb到挂了好几次了。这次搞了一台牛逼的服务器,虽说是opentstack里面的主机,但是iops 很不错。 感谢向军同学的帮助,不然就升级uek内核就能搞死我。 你的程序...
2018-10-16 16:57:36 435
原创 《Deep learning with non-medical training used for chest pathology identification》论文解读
该篇论文的主旨:利用CNN网络在非医学图像数据集上进行训练,然后用93张医学图像进行测试,并利用AUC的面积进行衡量右肺胸腔积液检测,心脏肥大和健康和有病的图像分类问题。作者提出这是史无前例的利用非医学图像来训练,但是模型在医学图像上依然通用的方法。验证深度学习CNNs方法在胸片图像数据上的病理检测的效果。在训练ImageNet图像分类的网络结构图以ImageNet中的数据集作为输入,分为1000...
2018-05-31 11:19:06 397
转载 docker中宿主机与容器(container)互相拷贝传递文件的方法
转载自:http://blog.csdn.net/dongdong9223/article/details/71425077 本文出自【我是干勾鱼的博客】1 从容器拷贝文件到宿主机拷贝方式为:docker cp 容器名:容器中要拷贝的文件名及其路径 要拷贝到宿主机里面对应的路径例如,将容器:mycontainer中路径:/opt/testnew/下的文件:file.txt拷贝到宿主机:/opt/t...
2018-05-30 11:56:31 1275
原创 ChexNet模型的复现
1.关于论文就是吴恩达的那篇肺炎检测的论文2.关于代码,用的是pytorch包,并在github上寻找源码参考。记录其中的重点:(1)关于数据的内存分配,还是用批模式训练比较合适,不然内存根本负荷不了(2)在GPU上训练和在存CPU上训练的时候数据之间的转换问题(3)Numpy类型的数据torch类型数据之间的转换,cpu和gpu都不同。3.关于最后生成的热力图模式调用的是openCV的包,利用灰...
2018-05-30 11:54:02 2274 3
原创 nvidia-docker 的使用
1.nvidia-docker拉取镜像一般情况下,nvidia-docker可以使用pull的方式直接从网上拉取images来主机host里面,然后在主机里面利用contrainer容器的方式启动想运行的images,这样可以保证多个容器运行,不互相干扰。但是也有不能上网的情况,这时候就可以用dockfile来编译images。2.nvidia-docker 运行容器nvidia-docker r...
2018-05-28 17:36:35 9895
原创 1*1卷积层的理解
1*1的卷积核这个还是挺有意思的,首先假设用平面的二维图像与1*1的核进行卷积,则我们会得到:这样只会在原来的像素上乘上一个系数,并没有什么直接的效果。但是假设在一个多通道的图像中用上1*1的卷积核,我们会得到什么样的效果呢?用一个6*6*32的图像去乘以1*1*32的卷积核得到的其实是一个6*6的二维矩阵。这样就将通道数32给消除了,相当于给图像降维的操作,而且很迅速。卷积核的通道数必须与源图像...
2018-05-18 13:47:03 6446
原创 ResNests(残差神经网络)个人理解
ResNets是针对很深的网络实际的,由残差块构建而成。残差块是一个两层的神经网络。通常情况下深度网络中一层的的构成首先是通过线性变换,经过激活函数后输出结果。公式代表的上述网络结构的主要救过路径,其中g代表的是激活函数。在残差网络中有一点是变化的,我们直接将第一层的输入a[l]向后拷贝,拷贝到下一层的激活函数之前,则第二层的输出就是也就是加上了a[l]这个残差层。如何将一个普通的网络构建成一个残...
2018-05-18 13:45:24 7433
原创 第四章 基于概率论的分类方法:朴素贝叶斯
朴素贝叶斯在数据较少的情况下仍然有效,可以处理多类别问题,但是对输入数据的准备方式较为敏感。贝叶斯决策理论的核心思想是选择具有最该概率的决策。应用贝叶斯准则得到: 如果 那么属于类别c1否则属于类别c2使用朴素贝叶斯进行文档分类:要从文本中获取特征,需要先拆分文本。特征是来自文本的词条,一个词条可以字符的任意组合。将文本看成是单词向量或者词...
2018-02-28 11:08:31 407
原创 第三章 决策树
决策时是经常使用的数据挖掘算法。决策树的主要优势在于数据形式非常容易理解。决策树其计算复杂度不高,输出结果容易理解,对中间值的缺失不敏感,可以处理不相关特征数据,但是也有可能产生过度匹配的问题。为了找到决定性的特征,划分出最好的结果,需要评估每个特征,完成测试之后,原始数据集就被划分为几个数据子集。如果划分数据子集的算法和划分原始数据集的方法相同,直到所有具有相同类型的数据均在一个数据子集内。如果...
2018-02-26 13:07:11 226
原创 第二章 k-近邻算法
K-近邻算法采用测量不同特征值之间的距离方法进行分类。具有精度高,对异常值不敏感,无数据输入假定的有点,缺点是计算复杂度高,空间复杂度高。k-近邻算法(KNN)的工作原理是:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似...
2018-02-24 11:45:01 208
原创 第一章 机器学习的基础
机器学习简单的说就是将无序的数据转换成有用的信息,其横跨计算机科学,工程技术和统计学等多个学科,可实际应用于从政治到地质学等多个领域。 移动计算和传感器产生的海量数据意味着未来我们将面临越来越多的数据,如何从海量数据中抽取到有价值的信息将是一个非常重要的课题。 针对鸟类专家系统的机器学习模型,首先要做的是算法训练,即学习如何分类,通常要为算法输入大量已分类数据作为算...
2018-02-23 11:44:27 194
原创 Halcon关于图像的数学运算的几个算子
1. sub_image();sub_image是最常用的一个图像运算算子之一,主要的应用领域应该是图像增强方面。在正常的工业相机拍摄的光学图像往往并不是完美的,需要对图像进行预处理。在预处理阶段可能会用到的图像运算包括,去噪,增强等等。
2017-05-23 13:23:15 6447
原创 Halcon字符识别
今天突然想起来玩一下Halcon,在Halcon论坛上看到有一个帖子写的是字符识别的方法,当时看了看有些没明白就查了点资料,现在来分享一下:1、Halcon的图像处理过程一般分为以下几个步骤 (1)图像读取 (2)图像分割 (3)形态学处理 (4)特征提取 (5)输出结果2、其实字符的识别和别的光学图像处理的步骤大体类似,主要用到
2016-07-25 15:16:35 11485 2
原创 CString 字符串指定修改某个字符
因为今天早上刚好做到这个,所以来总结一下。利用截断字符的API函数,AfxExtractSubString(),这个函数和vector的结合使用修改字符串内容。你可以将要修改的某段字符串跟剩下的分别截断到两个vector之后,再改变这个指定的字符串的内容。最后将改变后的字符串连接起来后输出就可以了。自从用了vector之后,我就不怎么喜欢用数组了,嘿嘿。但是用vector的时候
2016-01-29 11:31:24 4571
原创 MFC Edit control的更新
通常情况下修改Edit Control有GetDlgItemText()和SetDlgItemText()这两个API函数就可以了。但是有几项要注意的1、假设MFC应用程序的主界面要调用一个对话框,这个对话框在DoModal()之前,上面绑定的控件是查询不到的,这时候就会发生更新不了控件的问题。DoModal()函数的入口是重载的OnInitDialog()函数。在做DoModal
2016-01-28 15:07:41 3436
原创 MFC定时器的使用
最近在做一个应用框架,里面有一个用到定时器的函数。但是因为是多线程操作,且是同步线程,所以利用定时器函数画图的时候其存储变量的vector的清理。因为有的时候可能会导致你清楚了vector,但是定时器里画图的程序还没走完,所以可能会产生vector溢出的问题。所以,对于定时器在变换的时候可以分为以下几部:1、清除定时器,KillTimer(1);//1是定时器号2、利用标志位和
2016-01-27 13:10:06 469
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人