C实现大数加减乘基本操作

支持大数加、减、乘,其中减法支持负数
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 1005;

//大数加,把数字倒序先,然后正常加,进位给后面的位,最后倒序输出。判断下最高位是否被进位了就行
//倒序的原因是:如果不倒序,然后for倒着加会出现最高位进位的情况进到 数组下标-1 的情况,除非你一开始就预留一个0位
//OJ: http://acm.hdu.edu.cn/showproblem.php?pid=1002
void add(char *s1, char *s2) {
    int len1 = strlen(s1), len2 = strlen(s2);
    int maxLen = max(len1,len2);
    int a1[maxLen + 1];
    int a2[maxLen + 1];
    memset(a1,0,sizeof(a1));
    memset(a2,0,sizeof(a2));
    for (int i = 0; i < len1; ++i) {
        a1[i] = s1[ len1 - i - 1] - '0';
    }
    for (int i = 0; i < len2; ++i) {
        a2[i] = s2[ len2 - i - 1] - '0';
    }
    for (int i = 0; i < maxLen; ++i) {
        a1[i] += a2[i];
        a1[i + 1] += a1[i] / 10;
        a1[i] %= 10;
//        if(a1[i] > 9) {
//            a1[i + 1] ++;
//            a1[i] -= 10;
//        }
    }
    if( a1[maxLen] ) {
        maxLen ++;
    }
    for (int i = maxLen - 1; i >= 0; --i) {
        printf("%d", a1[i]);
    }
    printf("\n");
}


//大数减(在s1 > s2的情况可用,比如5-4=1,但不能用4-5=-1)
//跟加法一样,倒序相减,借位就+10借,最后处理前导0
void sub(char *s1, char *s2) {
    int len1 = strlen(s1), len2 = strlen(s2);
    int maxLen = max(len1,len2);
    int a1[maxLen + 1];
    int a2[maxLen + 1];
    memset(a1,0,sizeof(a1));
    memset(a2,0,sizeof(a2));
    for (int i = 0; i < len1; ++i) {
        a1[i] = s1[ len1 - i - 1] - '0';
    }
    for (int i = 0; i < len2; ++i) {
        a2[i] = s2[ len2 - i - 1] - '0';
    }
    for (int i = 0; i < maxLen; ++i) {
        if(a1[i] - a2[i] < 0) {
            a1[i] = a1[i] + 10 - a2[i];
            a1[i + 1] --;
        } else {
            a1[i] -= a2[i];
        }
    }
    while(maxLen > 1 && a1[maxLen-1] == 0 ) {       //去前导0
        maxLen --;
    }
    for (int i = maxLen - 1; i >= 0; --i) {
        printf("%d", a1[i]);
    }
    printf("\n");
}

//乘法,不倒序,直接正着乘 ,但进位需单独提出来处理,以及处理 0*103 这种去除前置0
// 12
// 34
//=
// 36
//  48
// 408
void mul(char *s1, char *s2) {
    int len1 = strlen(s1), len2 = strlen(s2);
    int maxLen = len1 + len2 -1;  //长度最多为 len1 + len2 - 1
    int ans[maxLen + 1];
    memset(ans,0,sizeof(ans));

    for (int i = 0; i < len1; ++i) {
        for (int j = 0; j < len2; ++j) {
            ans[ i+j ] += (s1[i]-'0') * (s2[j]-'0');
        }
    }
    //分开出来倒序i处理,而非在上面 i+j 进位处理是为了避免  i+j-1被多次进位超10,但被跳过
    for (int i = maxLen ; i >=1; i--) {
        if(ans[i] > 9) {
            ans[i-1] += ans[i]/10;
            ans[i] %= 10;
        }
    }

    //找第一个非0起点,处理0 * 103 = 000 的情况
    int start = 0;
    while(start != maxLen-1 && ans[start] == 0) {
        start ++;
    }
    for (int i = start; i < maxLen; ++i) {
        printf("%d", ans[i]);
    }
    printf("\n");
}


//比较两个正数的大小,用于减法
int compareSize(char *s1, char *s2) {
    int len1 = strlen(s1);
    int len2 = strlen(s2);
    if(len1 > len2) return 1;
    if(len1 < len2) return -1;
    for(int i=0;i < len1;i++){
        if(s1[i] > s2[i]){
            return 1;
        }
        if(s1[i] < s2[i]){
            return -1;
        }
    }
    return 0;
}

//大数减复杂版,支持负数和 s1 < s2 的情况
void sub_complex(char *s1, char *s2) {
    if( s1[0] == '-' && s2[0] == '-'){      //-1-(-2) = 2 - 1
        sub(s2 + 1,s1 + 1);
        return;
    }
    if( s1[0] == '-' && s2[0] != '-'){      //-1-2 = -(1+2)
        printf("-");add(s1 + 1,s2);
        return ;
    }
    if( s1[0] != '-' && s2[0] == '-'){      //1-(-2) = 1+2
        add(s1,s2 + 1);
        return ;
    }
    int diff = compareSize(s1,s2);
    if(diff == 0){                          //两个正数 相等为0
        printf("0\n");return;
    }
    if( diff < 0 ){                         //1-2 = -(2-1)
        printf("-");
        sub(s2,s1);
        return;
    }
    sub(s1,s2);                             //正常的 2-1
}

int main() {
//    duipai_mul();
//    freopen("input.txt","r",stdin);
    char s1[maxn], s2[maxn];
    while( scanf("%s%s", s1, s2) != EOF){
//        add(s1, s2);
//        sub(s1, s2);
//        mul(s1, s2);

//        printf("%s - %s = ", s1, s2);
        sub_complex(s1,s2);

    }
    return 0;
}



//*******************************************************/
//******************以下为测试 和 对拍代码 **************/
//*******************************************************/
// 1 ~ maxN 的普通数字乘法表
void normal_mul(int maxN){
    freopen("output_1.txt","w",stdout);
    for (int i = 0; i <= maxN; ++i) {
        for (int j = 0; j <= maxN; ++j) {
            printf("%d",  i*j);
            printf("\n");
        }
    }
    exit(0);
}
// 1 ~ maxN 的大数乘法表
void my_mul(int maxN){
    freopen("output_2.txt","w",stdout);
    char s1[maxn], s2[maxn];
    for (int i = 0; i <= maxN; ++i) {
        for (int j = 0; j <= maxN; ++j) {
            sprintf(s1, "%d", i);
            sprintf(s2, "%d", j);
            mul(s1, s2);
        }
    }
    exit(0);
}
//乘法对拍
int duipai_mul() {
    int maxN = 100;
//    normal_mul(maxN);
    my_mul(maxN);
}
// hdu 1002的输入格式
int main_hdu_1002() {
//    freopen("input.txt","r",stdin);
    char s1[maxn], s2[maxn];
    int t;
    scanf("%d", &t);
    for (int te = 1; te <= t; ++te) {
        scanf("%s%s", s1, s2);
        printf("Case %d:\n", te );
        printf("%s + %s = ", s1, s2);
        add(s1, s2);

//        printf("%s - %s = ", s1, s2);
//        sub(s1, s2);

//        printf("%s * %s = ", s1, s2);
//        mul(s1, s2);

        if (te != t) {
            printf("\n");
        }
    }
    return 0;
}



string版加法,不倒序,不过还是觉得c版本好些

#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 1005;

void add(string s1, string s2) {
    //在比较短的那个串 后面补0
    while (s1.length()<s2.length())s1 = '0' + s1;
    while (s2.length()<s1.length())s2 = '0' + s2;
    //两个串首补0,预留给最高位进位
    s1 = '0' + s1;
    s2 = '0' + s2;

    int maxLen = max(s1.length(),s2.length());
    //倒序相加
    for (int i = maxLen - 1; i >= 0; i--) {
        int num1 = s1[i] - '0';
        int num2 = s2[i] - '0';

        if( num1 + num2 > 9) {
            s1[i] = num1 + num2 - 10 + '0';
            s1[i - 1] ++;
        } else {
            s1[i] = num1 + num2 + '0';
        }
    }
    //如果预留的最高进位仍是0,说明没进位,删掉
    if (s1[0] == '0') {
        s1.erase(0, 1);
    }
    cout<<s1<<endl;
}

int main() {
//    freopen("input.txt","r",stdin);
    string s1,s2;
    int t;
    cin>>t;
    for (int te = 1; te <= t; ++te) {
        cin>>s1>>s2;
        cout<<"Case "<<te<<":"<<endl;
        cout<<s1<<" + "<<s2<<" = ";
        add(s1, s2);
        if (te != t) {
            cout<<endl;
        }
    }
    return 0;
}




1W以下阶乘:

#include<stdio.h>
#include<string.h>
#define MaxLen 40000	//1W的阶乘位数为35660
int a[MaxLen];
int main()
{
	int n,i,j,s,carry;
	while(scanf("%d",&n)!=EOF)
	{
		memset(a,0,sizeof(a));
		a[0]=1;
		for(i=2;i<=n;i++)
		{							//逐位相乘
			carry=0;
			for(j=0;j<MaxLen;j++)
			{						//carry为进位
				s = i * a[j] + carry;
				carry = s /10;
				a[j] = s % 10 ;
			}			//逆序存放:因为carry是上次的进位
		}
		for(i=MaxLen-1;i>=0;i--)	//去前导0
			if(a[i]!=0)
				break;
		for(;i>=0;i--)
			printf("%d",a[i]);
		putchar('\n');
	}
	return 0;
}


C++大数模板(不支持除法,据说是白书里的)

#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
using namespace std;

const int maxn = 1200;
struct bign{
  int len, s[maxn];
  bign() {
    memset(s, 0, sizeof(s));
    len = 1;
  }

  bign(int num) {
    *this = num;
  }

  bign(const char* num) {
    *this = num;
  }

  bign operator = (int num) {
    char s[maxn];
    sprintf(s, "%d", num);
    *this = s;
    return *this;
  }

  bign operator = (const char* num) {
    len = strlen(num);
    for(int i = 0; i < len; i++) s[i] = num[len-i-1] - '0';
    return *this;
  }

  string str() const {
    string res = "";
    for(int i = 0; i < len; i++) res = (char)(s[i] + '0') + res;
    if(res == "") res = "0";
    return res;
  }

  bign operator + (const bign& b) const{
    bign c;
    c.len = 0;
    for(int i = 0, g = 0; g || i < max(len, b.len); i++) {
      int x = g;
      if(i < len) x += s[i];
      if(i < b.len) x += b.s[i];
      c.s[c.len++] = x % 10;
      g = x / 10;
    }
    return c;
  }

  void clean() {
    while(len > 1 && !s[len-1]) len--;
  }

  bign operator * (const bign& b) {
    bign c; c.len = len + b.len;
    for(int i = 0; i < len; i++)
      for(int j = 0; j < b.len; j++)
        c.s[i+j] += s[i] * b.s[j];
    for(int i = 0; i < c.len-1; i++){
      c.s[i+1] += c.s[i] / 10;
      c.s[i] %= 10;
    }
    c.clean();
    return c;
  }

  bign operator - (const bign& b) {
    bign c; c.len = 0;
    for(int i = 0, g = 0; i < len; i++) {
      int x = s[i] - g;
      if(i < b.len) x -= b.s[i];
      if(x >= 0) g = 0;
      else {
        g = 1;
        x += 10;
      }
      c.s[c.len++] = x;
    }
    c.clean();
    return c;
  }

  bool operator < (const bign& b) const{
    if(len != b.len) return len < b.len;
    for(int i = len-1; i >= 0; i--)
      if(s[i] != b.s[i]) return s[i] < b.s[i];
    return false;
  }

  bool operator > (const bign& b) const{
    return b < *this;
  }

  bool operator <= (const bign& b) {
    return !(b > *this);
  }

  bool operator == (const bign& b) {
    return !(b < *this) && !(*this < b);
  }

  bign operator += (const bign& b) {
    *this = *this + b;
    return *this;
  }
};

istream& operator >> (istream &in, bign& x) {
  string s;
  in >> s;
  x = s.c_str();
  return in;
}

ostream& operator << (ostream &out, const bign& x) {
  out << x.str();
  return out;
}

int main() {
   // freopen("in.txt","r",stdin);
    int n;
    bign a,b,c;
    cin>>n;
    for(int i=1;i<=n;i++)
    {
        cin >> a >> b;
        c = a + b;
        cout<<"Case "<<i<<":"<<endl;
        cout << a << " + "<<b<<" = "<<c<<endl;
        if(i!=n)
            cout<<endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值