题目:
Given a range [m, n]where 0 <= m <= n <= 2147483647, return the bitwise AND of all numbersin this range, inclusive.
For example, giventhe range [5, 7], you should return 4.
分析:
这道题要求计算一定范围内所有整数的按位与,常规方法,可以对于该范围内的所有整数依次进行按位与操作,但这种方法的时间复杂度为O(N)。通过对数据进行分析,其实我们可以使用更省时的方法。
(1)首先,先看个简单例子:
Fig.1
Fig.1呈现的是0~8的二进制表示,我们可以发现:
从右到左第0位的0和1交替出现,也就是说对于任意2个或2个以上的连续整数,这一位必然会同时出现0和1,而要出现0->1->0或者1->0->0的情况,至少得要3个连续整数。
从右到左第1位的0 和1每隔2个数交替出现,也就是说对于任意大于等于3个的连续整数,这一位必然会同时出现0和1,而要出现0->1->0或者1->0->0的情况,至少得要4个连续整数。
从右到左第2位的0 和1每隔4个数交替出现,也就是说对于任意大于等于5个的连续整数,这一位必然会同时出现0和1,而要出现0->1->0或者1->0->0的情况,至少得要6个连续整数。
……
按照这个规律,我们可以总结出:
a:对于任意大于等于2^n+1个的连续整数,从右到左的第0~n位,每一位必然会同时出现0和1。
b:对于第n位,如果要出现0->1->0或者1->0->0的情况,至少得要2^n+2个连续整数才行。
(2)其次,对于按位与,只有当某一位的值全部为1,它的计算结果才可能为1,(1&1=1、1&0=0、0&0=0)。
(3)最后,要对范围[m,n]内的所有整数进行按位与运算,那么,根据(2),我们可以得出,对于从右到左的第x位,除非[m,n]范围内的所有整数的第x位值都为1,最终的结果result的第x位值才可能为1。
由(1)a可知,对于大于等于(2^x+1)个的连续整数,从右到左的第0~x位,每一位必然会同时出现0和1,也就是说reslut的第0~x位必然为0。
而[m,n]共包含了len=n-m+1个连续整数,所以,只需要求解出最大的那个x值,即满足Eq.1,便可以确定后reslut的第0~x位的值。
2^(x+1)+1>len>=2^x+1 (1)
此外,对于[m,n]范围中的连续整数,对于前面的任意一位y(y>x),只可能出现0->1、1->0、0->0、1->1的情况。(为什么呢?反证:假设出现了0->1->0或者1->0->0的情况,由(1)b可知,len>=2^y+2,而y>x,这和Eq.1相矛盾。)所有,我们要想确定前面每一位的result值,只需要对m和n进行&运算即可。
综上,本题的解决方法为:
-
计算len,(len= n-m+1);
-
计算x使得2^(x+1)+1>len>=2^x+1;
-
计算m&n;
-
计算result,其二进制值为m&n并将后x位赋值为0。
(画外音:在脑袋里想的时候感觉挺简单的,可用文字却发现怎么也描述不清楚……是我的语言组织能力太烂了吗??啰嗦了一大堆,也不知道说清楚了没……=_=b)
代码:
<span style="font-size:14px;"><span style="font-family:System;font-size:14px;">class Solution {
public:
int rangeBitwiseAnd(int m, int n) {
if(m<0||n>2147483647)
return 0;
if(n<m)
return 0;
int len=n-m+1-1;
int bSize_len=-1;
while(len!=0)
{
len=len/2;
bSize_len++;
};
int result=m&n;
for(int i=0;i<=bSize_len;i++)
result&=~(1<<i);
return result;
}
};
</span></span>
总结:
1、位移动操作符<<、>>为什么会失效?
最初,我使用如下代码计算result:
<span style="font-size:14px;"><span style="font-family:System;font-size:14px;">n>> bSize_len;
m>> bSize_len;
int result=m&n;
result<< bSize_len;
</span></span>
但调试发现,右移运算符却没有被执行?