题目:
Given an integer n, return the number of trailing zeroes in n!.
Note: Your solution should be in logarithmic time complexity.
分析:
【转】原地址
结论:对于n的阶乘n!,其因式分解中,如果存在一个因子“5”,那么它必然对应着n!末尾的一个“0”。
证明:
(1)当n < 5时, 结论显然成立。
(2)当n >= 5时,令n!= [5k * 5(k-1) * … * 10 * 5] * a,其中 n = 5k + r (0 <= r <= 4),a是一个不含因子“5”的整数。
对于序列5k, 5(k-1), …, 10, 5中每一个数5i(1 <= i <= k),都含有因子“5”,并且在区间(5(i-1),5i)(1 <= i <= k)内存在偶数,也就是说,a中存在一个因子“2”与5i相对应。即,这里的k个因子“5”与n!末尾的k个“0”一一对应。
我们进一步把n!表示为:n!= 5^k * k! * a(公式1),其中5^k表示5的k次方。很容易利用(1)和迭代法,得出结论1。
令f(x)表示正整数x末尾所含有的“0”的个数, g(x)表示正整数x的因式分解中因子“5”的个数,则:
f(n!) = g(n!) = g(5^k * k! * a) = k + g(k!) = k + f(k!)
所以,最终的计算公式为:
当0 < n < 5时,f(n!) = 0;
当n >= 5时,f(n!) = k + f(k!), 其中 k = n / 5(取整)。
代码:
class Solution {
public:
int trailingZeroes(int n) {
int result=0;
int m=n/5;
if(m==0)
result=0;
else
result=m+trailingZeroes(m);
return result;
}
};