链接:http://acm.hdu.edu.cn/showproblem.php?pid=5816
题意:对方有p滴血,你的牌库有n张A牌,m张B牌;A牌的效果是再抽两张牌,B牌的效果对对方造成xi滴血伤害。
你现在手牌为空,现在可以抽一张牌,问一回合打败对手的概率。
分析:n+m<=20,所以对于抽牌我们都可以用一个二进制表示当前已经抽牌的状态;
假设通过A牌我们已经抽了x张A牌,y张B牌,那么我们可以知道接下来还能不抽牌:判断还有没有A牌剩余 x*2-(x+y)+1>0
加1是因为第一张A牌是开始时抽到的不是通过A 抽的。
然后判断当前状态能不能打败,若能直接可以得到答案,不能继续转移。
代码:
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<string>
#include<vector>
#include<queue>
#include<cmath>
#include<stack>
#include<set>
#include<map>
#define INF 0x3f3f3f3f
#define Mn 1100000
#define Mm 2000005
#define mod 1000000007
#define CLR(a,b) memset((a),(b),sizeof((a)))
#define CLRS(a,b,Size) memset((a),(b),sizeof((a[0]))*(Size+1))
#define CPY(a,b) memcpy ((a), (b), sizeof((a)))
#pragma comment(linker, "/STACK:102400000,102400000")
#define ul u<<1
#define ur (u<<1)|1
using namespace std;
typedef long long ll;
ll dp[Mn];
ll fac[Mn];
int a[20];
int p,n,m;
bool canKO(int x) {
int ax=0;
for(int i=n;i<m+n;i++) if(x&(1<<i)) ax+=a[i-n];
return ax>=p;
}
ll gcd(ll a,ll b) {
return b?gcd(b,a%b):a;
}
int main() {
int T;
fac[0]=1;
for(int i=1;i<=20;i++) fac[i]=fac[i-1]*i;
scanf("%d",&T);
while(T--) {
scanf("%d%d%d",&p,&n,&m);
for(int i=0;i<m;i++) scanf("%d",&a[i]);
int all=(1<<(n+m))-1;
for(int s=0;s<=all;s++) dp[s]=0;
dp[0]=1;
ll ans=0;
for(int s=0;s<=all;s++) {
if(!dp[s]) continue;
int z=0,h=0;
for(int i=0;i<n;i++) if(s&(1<<i)) z++;
for(int i=n;i<(n+m);i++) if(s&(1<<i)) h++;
if(z+1-h<0) continue;
if(canKO(s)) {
ans+=dp[s]*fac[n+m-z-h];
continue;
}
if(z+1-h==0) continue;
for(int i=0;i<(n+m);i++) {
if(!(s&(1<<i))) dp[s|(1<<i)]+=dp[s];
}
}
ll g=gcd(ans,fac[n+m]);
printf("%I64d/%I64d\n",ans/g,fac[n+m]/g);
}
return 0;
}