逻辑回归算法之梯度算法

这篇博客详细解析了逻辑回归中梯度上升算法的原理。从二分类问题引入,利用sigmoid函数作为激活函数,解释了损失函数的构建及其与最大似然估计的关系。通过求解损失函数的梯度,迭代更新权重,最终找到最优参数。文章以Python代码为例,展示了梯度上升算法的迭代过程。
摘要由CSDN通过智能技术生成

 

在学习Logistic逻辑回归算法(上一节介绍)编程时,被其中一句python语句卡住了,该语句就是:

weights = weights + alpha * dataMatrix.transpose() * error

让我们来顺一下。

首先,是二分类算法,类别为1或0,利用sigmoid函数很合适

令:

整合得:

当sigmoid>0.5时,分类为1,sigmoid<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值