kNN算法通俗讲解

本文通过实例详细解释了kNN(k-NearestNeighbor)算法的工作原理,包括数据准备、分类过程以及如何评估算法的正确率。还介绍了kNN在约会网站配对和手写识别系统的应用,并提供了kNN的Python代码链接。
摘要由CSDN通过智能技术生成

        接触机器学习一段时间了,知道它有四种分类:监督学习、无监督学习、半监督学习、强化学习;也知道它的一般步骤:收集数据-->准备数据-->分析数据-->选择模型-->训练模型-->评估模型;知道数据越多测试结果就越准确。

        但是,作为一理工女,不动手就不理解,有很多疑团,怎么让一堆样本做为数据输入,怎么训练数据让模型更好,通过什么方法来评估算法,等等等等。

        然而,一切通过python编程可以解开模糊不清。资源也会单独上传。

       首先是kNN算法。

kNN(k-NearestNeighbor)概述:给一堆数据,每一条数据都要有类别标签,然后输入一条没有类别标签的数据,将这条数据的特征(就是这条数据本身)跟已经存在类别标签的数据一一比较,按相似度排序,找出最相似的k(一般不大于20的整数)条数据,看这k条数据中哪个类别多,那这条新数据就是那个类别。

可能只看文字描述还是不太清晰明了。接下来……

(一)准备数据集。具体的数据是数值型的矩阵如:

          [[1.0, 1.1],

           [1.0,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值