Weakly supervised learning approaches for object segmentation On Regularized Losses for Weakly-supervised CNN Segmentation MengMotivationCurrently, the dominated weakly supervised learning approaches learn from pseudo fully labeled masks.
Image saliency_detection / segmentation论文 Detect Globally, Refine Locally: A Novel Approach to Saliency DetectionResearch BackgroundExisting saliency detection approaches usually focus on how to effectively combine hierarchical features s...
Video Tracking--初识 CREST: Convolutional Residual Learning for Visual TrackingResearch BackgroundGiven a bounding box annotation in the first frame, developing a tracker that is robust to a variety of challenges is an ...
CVPR2018--Video object segmentation--5 Quo Vadis, Action Recognition? A New Model and the Kinetics DatasetSummaryThis paper provides a Kinetics Human Action Video dataset, including 400 human action classes and over 400 clips per class....
强化学习文章整理 Asynchronous Methods for Deep Reinforcement LearningResearch backgroundFor an online RL agent, the sequence of observed data is non-stationary and strong correlated. A common solution is to aggrega...
论文学习CAM系列 Learning Deep Features for Discriminative LocalizationResearch BackgroundIn CNNs, the convolution units perform as an object detector. However, the fully-connected layers wipe off this remarkable l...
论文阅读--ECCV2018--Reinforcement Look Before You Leap: Bridging Model-Free and Model-Based Reinforcement Learning for Planned-Ahead Vision-and-Language Navigation略读, motivationRL的两种分类参考ppp8300885的博客Model-free RL: 不对环境进行建模,直接寻找在状...
原 CVPR2018-video object segmentation--4 SeGAN: Segmenting and Generating the Invisible略读,motivationThis work strives to complete the appearance of the occluded objects via two steps: segmenting the invisible parts of the objects and gener...
实验技巧 在conda中快速创建环境导出一个环境中安装包的信息(1)激活环境 source activate [myenv](2)导出 conda env export > environment.yml根据yml文件配置环境conda env create -f=environment.yml...
CVPR2018-video object segmentation--3 Referring Image Segmentation via Recurrent Refinement Networks Ruiyu略读 motivationThis work segments image object from natural language descriptions, which requires combining natural language process...
论文阅读--CVPR2018--reinforcement learning A2-RL: Aesthetics Aware Reinforcement Learning for Image Cropping DebangResearch backgroundImage cropping is a common task in image editing, which can give editor professional advices and save a lo...
原 论文阅读--CVPR2018--video object segmentation--2 DeLS-3D: Deep Localization and Segmentation with a 3D Semantic Map略读,motivationThis research focuses on two crucial technologies in the application of autonomous driving: self-localization/camera ...
排序算法整理 本文讨论的所有排序算法默认进行升序排列冒泡排序算法思想:相邻元素两两比较,如果是升序排列,不变;如果不是,交换两个元素。多次局部有序的操作达到整体有序 时间复杂度:O(n2)O(n2)O(n^{2}),共需要比较n(n−1)2n(n−1)2\frac{n(n-1)}{2}次 代码:GitHub选择排序算法思想:遍历数组,每次选择出未排序部分最小的数值,将其置于恰当位置,最终实现...
论文阅读--CVPR2018--video object segmentation--1 Motion-Guided Cascaded Refinement Network for Video Object SegmentationResearch background:As the consecutive frames among a video show strong spatio-temporal correlation, motion estimation e.g...
数组和字符串问题分析 给定一个经过排序的数组arr,在其中寻找一个子数组,使得子数组由连续的整数构成。这段代码可以用于在数据中寻找连续的上升边沿。代码: max_length = 0 max_sets = None data_f = arr[0] length_c = 1 sets_c = [arr[0]] for data in arr[1:]: ...
动态规划问题分析 本博客讨论的问题主要参考AlgoExpert中dynamic programming的question list,求解方法参考Geeksforgeeks网站,代码位于我的GitHub。 - max subset sum no adjacent - number of ways to make change - edit/levenshtein distance - ugly number ...
动态规划之背包问题 动态规划之背包问题问题描述:给定一个容量为N的背包,给定m件物品,每件物品价值为w[i]、重量为c[i],求如何选择物体可以使物体的费用不超过背包的总容量,且背包能够带走的最大的价值。 1. 如果限定每件物品只有一件,则为0-1背包问题; 2. 如果每件物品的数量不受限制,则为完全背包问题; 3. 如果限定每件物品的数量为n[i]件,则为多重背包问题; 4. 将1、2和3的情况...
Python学习-lambda表达式 lambad表达式lambda表达式可以创建一个可以调用的函数,但它返回一个函数,而不是将函数赋值给一个变量名,因此,lambda函数也被称为“匿名函数”。lambda函数的形式为: lambda arg1, arg2, …argN: expression using args 即:lambda关键字,参数,冒号,表达式例如: ”’ f = lambda x, y, z: x...
Python学习--递归 Python中使用递归递归指直接或间接地调用自身以进行循环的函数。尽管递归在内存空间和执行时间方面可能效率较低,但它允许程序遍历任意的、不可预知形状的结构,在部分情况下有不可替代的作用。遍历特殊形状的结构计算如下一个嵌套子列表结构中所有数字的和:[1, [2, [3, 4], 5], 6, [7, 8]] 程序:def sumtree(L): tot = 0 ...
论文学习-ResNet理解 ResNet希望解决的问题一般而言,深层网络性能好,但网络加深之后难以优化。ResNet [1]希望通过引入shortcuts的恒等映射,使网络优化变得简单。做法假设期望逼近的函数为H(x), 简单堆叠的方法用多层来逼近H(x),而引入shortcuts后,ResNet期望逼近的函数变为F(x) = H(x) - x。作者假设(并通过实验证明)这种方式更容易优化。 注意: ...
PyTorch中使用预训练的模型初始化网络的一部分参数 在预训练网络的基础上,修改部分层得到自己的网络,通常我们需要解决的问题包括: 1. 从预训练的模型加载参数 2. 对新网络两部分设置不同的学习率,主要训练自己添加的层 一. 加载参数的方法: 加载参数可以参考apaszke推荐的做法,即删除与当前model不匹配的key。代码片段为:model = ...model_dict = model.state_dict()# 1.
index image: 用单通道图像显示彩色 借鉴:stakeflow的讨论 对于semantic segmentation,annotation数据的标注形式一般为背景区域为0、物体区域依次标注1、2、3……。单通道即可正确记录数据,但为了直观,通常需要彩色显示。这时需要使用“索引图像”,用单通道显示彩色图像。在matlab中读入索引图像的方法:[img, cmap] = imread('./img.png'); 其中,cmap为索引图
论文阅读-2018-0114 论文:Video Object Segmentation Without Temporal Information 亮点:做VOS,但不使用temporal information。输入video,使用image semantic segmentation的方法得到instance分割结果,以及与之对应的类别标签。同时,用传统VOS方法得到视频前景物体的估计。找instance segmenta...
论文阅读笔记-Segmentation-Aware Convolutional Networks Using Local Attention Masks 论文阅读笔记-Segmentation-Aware Convolutional Networks Using Local Attention Masks
Anaconda安装PyTorch PyTorch功能强大,可以简洁方便的实现多种network。Anaconda是一个PyTorch包管理工具,能够在同一机器上创建多个互不影响的Python环境。本教程首先安装Anaconda,再创建特定环境,运行PyTorch实现的reinforcement learning程序。Part1:安装Anaconda和PyCharm 按照教程从清华的源下载Anaconda并安装,安
Python调用MATLAB脚本 可以通过Python的接口调用多种语言,这非常适合于同时使用多种工具、多个平台的深度学习任务。Python调用MATLAB的脚本或函数,可以参考MATLAB官方说明文档Get Started with MATLAB Engine API for Python。简言之,首先在MATLAB中安装Python的engine,然后在Python中导入即可。import matlab.engine...
Ubuntu知识 1. 程序的安装方式 Ubuntu系统下常见的软件安装方式包括源码安装和包管理器安装。(1)源码安装 下载程序的源码,编译后安装。一般包括,configure, make, make install这几个步骤。(2)包管理器安装 软件发布者将软件编译为二进制文件,直接使用二进制文件安装。 a) apt-get install,用于安装deb包。
Semantic Object Segmentation in Weakly Labelled Videos via A Self-Paced Fine-Tuning Network 本文总结投稿NIPS2016的一个工作。这个工作将self-paced learning 嵌入到CNN中,提出了与之相应的一套优化算法,在弱监督学习的模式下学习CNN。虽然由于创新性不足被拒稿,但论文仍有一些亮点,文章地址链接:https://pan.baidu.com/s/1oAspPKe 密码:bcyv。亮点1:引入自步学习后提出使用的优化算法亮点2:首次尝试用弱监督方法训练CNN