C1 = A1
C2 = A1 + A2
C3 = A3
C4 = A1 + A2 + A3 + A4
C5 = A5
C6 = A5 + A6
C7 = A7
C8 = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8
...
C2 = A1 + A2
C3 = A3
C4 = A1 + A2 + A3 + A4
C5 = A5
C6 = A5 + A6
C7 = A7
C8 = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8
...
C16 = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 + A9 + A10 + A11 + A12 + A13 + A14 + A15 + A16
Cn = A(n – 2^k + 1) + ... + An
int c[66666],n;
int lowbit(int x)
{
return x&(-x);
}
void add(int x,int y)
{
for(int j=x;j<=n;j+=lowbit(j))
c[j]+=y;
}
void sub(int x,int y)
{
for(int j=x;j<=n;j+=lowbit(j))
c[j]-=y;
}
int sum(int x)
{
int sum=0;
for(int j=x;j>0;j-=lowbit(j))
sum+=c[j];
return sum;
}
void qurry(int x,int y)
{
printf("%d\n",sum(y)-sum(x-1));
}