高精度除法是4则运算中最难的了。
但是只要解决了高精度除法,那么高精度求余数那么也就随之解决了,真是一举两得。
高精度算法的普通思想是用减法来实现,
即A/B用减法来实现,就是不断地用A去减B,能减多少次,那么商就是多少。
那么我们就要写一个高精度减法和一个高精度数判断大小的函数(用来判断何时停止减)
但是这样呢,有一个缺陷,比如用123456789987654321/1 每次只减去1, 那么这算法是何其低效啊。
所以,我们要让每一次减去的数尽可能大。如下:
111/9 我们可以让 111 - 9*10 然后21-9 12-9
即让B乘以一个数,这个数是多少呢?
我们通过A的size()和B的size()来寻找
如A.size() =3 B.size() =1 那么这个数是10
A.size() =4 B.size() =1 那么这个数是100
即B乘以一个数,使B的位数比A小一位即可
#include<iostream>
#include<string>
#include<algorithm>
#include<math.h>
using namespace std;
class BigNum
{
public:
friend istream& operator >>(istream &is, BigNum &rhs);
friend ostream& operator <<(ostream &os, BigNum &rhs);
bool operator <( BigNum &rhs);//用来判断被减数够不够减
string operator -( BigNum &rhs);//用来实现除法
int operator /( BigNum &rhs);
private:
string num;
};
istream& operator>>(istream &is,BigNum &rhs)
{
is>>rhs.num;
return is;
}
ostream& operator<<(ostream &os, BigNum &rhs)
{
cout<<rhs.num;
return os;
}
bool BigNum:: operator <(BigNum &rhs)//重载的<用来判断何时被减数小于减数
{
if(num.size() >= rhs.num.size())
{
if(num.size() == rhs.num.size())
{
for(int i=0;i<num.size();++i)
{
if(num[i] > rhs.num[i])
return false;
else if(num[i] < rhs.num[i])
return true;
}
}
else//num.size() > rhs.num.size()
return false;
return false;//说明被减数和减数完全想等
}
else//num.size()<rhs.num.size(),被减数小于减数
return true;
}
string BigNum::operator -( BigNum &rhs)
{//默认够减
reverse(num.begin(),num.end());
reverse(rhs.num.begin(),rhs.num.end());
int borrow = 0;
int i ;
for( i=0;i<rhs.num.size();++i)
{
num[i] -= borrow;
if(num[i] >= rhs.num[i])
{
num[i] -= (rhs.num[i] - 48);
borrow = 0;
}
else
{
num[i] = num[i] + 10 - rhs.num[i] +48;
borrow =1;//借位来减
}
}
while(borrow !=0)
{
if(num[i] -'0' >= borrow)
{
num[i] -=borrow;
borrow = 0;
}
else
{
num[i] = num[i] + 10 - borrow;
borrow =1;
}
++i;
}
reverse(num.begin(),num.end());
reverse(rhs.num.begin(),rhs.num.end());
string::iterator iter = num.begin();
while(iter!=num.end()-1)//删除因为借位而产生的前导0
{
if(*iter == '0')
iter = num.erase(iter);
else
break;
}
return num;
}
int BigNum:: operator /( BigNum &rhs)
{
int shang = 0;//记录减了几次,即商
while(! (*this < rhs) )//被减数不小于减数时,才循环不断地减
{
if(num.size() - rhs.num.size() >=2)
{
BigNum temp;
temp.num = rhs.num;
temp.num.append(num.size()-temp.num.size()-1,'0');//在末尾加0,即乘以一个数,这个数由size决定
shang = shang + pow(10,num.size()-rhs.num.size()-1);//pow(10,num.size()-rhs.num.size()-1)是一次减了多少个减数
*this - temp;
}
else
{
shang+=1;
*this - rhs;
}
}
return shang;
}
int main()
{
BigNum b1,b2;
while(1)
{
cin>>b1>>b2;
cout<<b1/b2<<endl;
}
}
突然又想到,如果商太大,无法存储的问题,还要写个商的大数算法,诶