Pandas处理CSV文件的常用技巧

本文详细介绍了使用Pandas处理CSV文件的五个关键步骤:读取文件、统计列值频率、筛选特定值、遍历数据行及绘制直方图。在读取中文CSV时需注意编码问题,通过df.info()获取基本信息。利用value_counts()统计列值并绘制柱状图进行可视化,同时展示了如何筛选和操作数据以及遍历每一行。最后,文章提供了绘制直方图的完整代码示例。
摘要由CSDN通过智能技术生成

Pandas处理CSV文件,分为以下几步:

  1. 读取Pandas文件
  2. 统计列值出现的次数
  3. 筛选特定列值
  4. 遍历数据行
  5. 绘制直方图(柱状图📊)

读取Pandas文件

df = pd.read_csv(file_path, encoding='GB2312')
print(df.info())

注意:Pandas的读取格式默认是UTF-8,在中文CSV中会报错:

UnicodeDecodeError: 'utf-8' codec can't decode byte 0xd1 in position 2: invalid continuation byte

修改编码为 GB2312 ,即可,或者忽略encode转义错误,如下:

df = pd.read_csv(file_path, encoding='GB2312')
df = pd.read_csv(file_path, encoding='unicode_escape')

df.info()显示df的基本信息,例如:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3840 entries, 0 to 3839
Data columns (total 16 columns):
 #   Column         Non-Null Count  Dtype  
---  ------         --------------  -----  
 0   实验时间批次         3840 non-null   object 
 1   物镜倍数           3840 non-null   object 
 2   板子编号           3840 non-null   object 
 3   板子编号及物镜倍数      3840 non-null   object 
 4   图名称            3840 non-null   object 
 5   细胞类型           3840 non-null   object 
 6   板子孔位置          3840 non-null   object 
 7   孔拍摄位置          3840 non-null   int64  
 8   细胞培养基          3840 non-null   object 
 9   细胞培养时间(小时)     3840 non-null   int64  
 10  扰动类别           3840 non-null   object 
 11  扰动处理时间(小时)     3840 non-null   int64  
 12  扰动处理浓度(ug/ml)  3840 non-null   float64
 13  标注激活(1/0)      3840 non-null   int64  
 14  unique         3840 non-null   object 
 15  tvt            3840 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值