hdu 2444The Accomodation of Students 二分匹配+dfs分组

本文探讨了一种使用染色法解决图的两部分划分问题的方法,即给定n个人和m对关系,判断是否能将他们分为两组,使得每组中没有互相认识的人。通过构建邻接矩阵并应用深度优先搜索,本文提供了判断是否能正确划分以及划分后的最大人数的算法。
摘要由CSDN通过智能技术生成

题目大意:输入有n个人和m对关系,要求把他们分成两组,每组的人中不能有互相认识的,如果不可以分成这样的两组,输出NO,否则输出这两组中最多人的人数。
用染色法,如果有环的话,环里面的点数为奇数的话,就会出现矛盾的情况,就不能分成两组。

#include<stdio.h>
#include<cstring>
#include<iostream>
#include<vector>
using namespace std;
#define N 211
#define clr(a,b) (memset(a,b,sizeof(a)))
int link[N],col[N];
bool vis[N];
vector<int>Map[N];
void init()
{
    clr(link,-1);
    clr(vis,false);
    clr(col,-1);
    for(int i=0;i<N;i++)
        Map[i].clear();

}
int find(int u)
{
    for(int i=0;i<Map[u].size();i++)
    {
        int v=Map[u][i];
        if(!vis[v])
        {
            vis[v]=true;
            if(link[v]==-1||find(link[v]))
            {
                link[v]=u;
                return 1;
            }
        }
    }
    return 0;
}
bool dfs(int u,int tar)
{
    for(int i=0;i<Map[u].size();i++)
    {
        int v=Map[u][i];
        if(col[v]==-1)
        {
            vis[v]=true;
            col[v]=tar^1;
            if(!dfs(v,col[v]))
                return false;
        }
        else if(col[v]==(tar^1)) vis[v]=true;
        else if(col[v]==tar) return false;
    }
    return true;
}
int main()
{
    int n,m;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        init();
        for(int i=1;i<=m;i++)
        {
            int a,b;
            scanf("%d%d",&a,&b);
            Map[a].push_back(b);
        }

        int flag=0;
        for(int i=1;i<=n;i++)
        {
            if(vis[i]) continue;
            col[i]=1;
            if(!dfs(i,col[i]))
                {
                    flag=1;
                    break;
                }
        }
        if(flag)
        {
            puts("No");
            continue;
        }
        int ans=0;
        for(int i=1;i<=n;i++)
        {
            clr(vis,false);
            if(find(i))
                ans++;
        }
        printf("%d\n",ans);

    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值