ArrayList和LinkedList

本文对比了数组和链表这两种基本的数据结构。介绍了它们在内存使用、数据访问、插入删除操作及扩展性等方面的优劣,并解释了这些差异背后的原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

单向链表由若干同类型的结点串接而成。每个结点包括两个域,即数据域和指针域。数据域保存实际数据,指针域指向下一结点。尾结点指针域为空(NULL),表示链表结束。若尾结点的指针域指向首结点,则构成环形链表。数组和链表有类似功能,具体区别如下:


数组优于链表的:

  1. 内存空间占用的少。因为链表节点会附加上一块或两块下一个节点的信息.但是数组在建立时就固定了.所以也有可能会因为建立的数组过大或不足引起内存上的问题.

  2. 数组内的数据可随机访问。但链表不具备随机访问性.这个很容易理解.数组在内存里是连续的空间.比如如果一个数组地址从100到200,且每个元素占用两个字节,那么100-200之间的任何一个偶数都是数组元素的地址.可以直接访问.链表在内存地址可能是分散的.所以必须通过上一节点中的信息找能找到下一个节点。

  3. 查找速度上。这个也是因为内存地址的连续性的问题,不罗索了。

链表优于数组的:

  1. 插入与删除的操作。如果数组的中间插入一个元素,那么这个元素后的所有元素的内存地址都要往后移动。删除的话同理.只有对数据的最后一个元素进行插入删除操作时,才比较快。链表只需要更改有必要更改的节点内的节点信息就够了。并不需要更改节点的内存地址。

  2. 内存地址的利用率方面。不管你内存里还有多少空间,如果没办法一次性给出数组所需的要空间,那就会提示内存不足,磁盘空间整理的原因之一在这里.而链表可以是分散的空间地址。

  3. 链表的扩展性比数组好。因为一个数组建立后所占用的空间大小就是固定的.如果满了就没法扩展。只能新建一个更大空间的数组.而链表不是固定的,可以很方便的扩展。
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELMSSA-ELM的具体实现代码,并通过波士顿房价数据其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例性能对比图表,帮助读者更好地理解复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值