在OpenCV中Mat、CvMat和IplImage类型都可以代表和显示图像。IplImage由CvMat派生,而CvMat由CvArr派生即CvArr -> CvMat -> IplImage,Mat类型则是C++版本的矩阵类型(CvArr用作函数的参数,无论传入的是CvMat或IplImage,内部都是按CvMat处理)。
其中Mat类型侧重于计算,数学性较高,OpenCV对Mat类型的计算也进行了优化;而CvMat和IplImage类型更侧重于"图像",OpenCV对其中的图像操作(缩放、单通道提取、图像阈值操作等)进行了优化。很多时候需要三种类型的相互转化,这里简要介绍一下。
========================CvMat和Mat间的转化和拷贝========================
1、CvMat之间的复制
//注意:深拷贝 - 单独分配空间,两者相互独立
CvMat* a;
CvMat* b = cvCloneMat(a); //copy a to b
2、Mat之间的复制
- //注意:浅拷贝 - 不复制数据只创建矩阵头,数据共享(更改a,b,c的任意一个都会对另外2个产生同样的作用)
- Mat a;
- Mat b = a; //a "copy" to b
- Mat c(a); //a "copy" to c
- //注意:深拷贝
- Mat a;
- Mat b = a.clone(); //a copy to b
- Mat c;
- a.copyTo(c); //a copy to c
//注意:浅拷贝 - 不复制数据只创建矩阵头,数据共享(更改a,b,c的任意一个都会对另外2个产生同样的作用)
Mat a;
Mat b = a; //a "copy" to b
Mat c(a); //a "copy" to c
//注意:深拷贝
Mat a;
Mat b = a.clone(); //a copy to b
Mat c;
a.copyTo(c); //a copy to c
3、CvMat转Mat
- //使用Mat的构造函数:Mat::Mat(const CvMat* m, bool copyData=false); 默认情况下copyData为false
- CvMat* a;
- //注意:以下三种效果一致,均为浅拷贝
- Mat b(a); //a "copy" to b
- Mat b(a, false); //a "copy" to b
- Mat b = a; //a "copy" to b
- //注意:当将参数copyData设为true后,则为深拷贝(复制整个图像数据)
- Mat b = Mat(a, true); //a copy to b
//使用Mat的构造函数:Mat::Mat(const CvMat* m, bool copyData=false); 默认情况下copyData为false
CvMat* a;
//注意:以下三种效果一致,均为浅拷贝
Mat b(a); //a "copy" to b
Mat b(a, false); //a "copy" to b
Mat b = a; //a "copy" to b
//注意:当将参数copyData设为true后,则为深拷贝(复制整个图像数据)
Mat b = Mat(a, true); //a copy to b
4、Mat转CvMat
- //注意:浅拷贝
- Mat a;
- CvMat b = a; //a "copy" to b
- //注意:深拷贝
- Mat a;
- CvMat *b;
- CvMat temp = a; //转化为CvMat类型,而不是复制数据
- cvCopy(&temp, b); //真正复制数据
//注意:浅拷贝
Mat a;
CvMat b = a; //a "copy" to b
//注意:深拷贝
Mat a;
CvMat *b;
CvMat temp = a; //转化为CvMat类型,而不是复制数据
cvCopy(&temp, b); //真正复制数据
1、IplImage之间的复制
这个不赘述了,就是cvCopy与cvCloneImage使用区别,贴张网上的图:
2、IplImage转Mat
- //使用Mat的构造函数:Mat::Mat(const IplImage* img, bool copyData=false); 默认情况下copyData为false
- IplImage* srcImg = cvLoadImage("Lena.jpg");
- //注意:以下三种效果一致,均为浅拷贝
- Mat M(srcImg);
- Mat M(srcImg, false);
- Mat M = srcImg;
- //注意:当将参数copyData设为true后,则为深拷贝(复制整个图像数据)
- Mat M(srcImg, true);
//使用Mat的构造函数:Mat::Mat(const IplImage* img, bool copyData=false);
默认情况下copyData为false
IplImage* srcImg = cvLoadImage("Lena.jpg");
//注意:以下三种效果一致,均为浅拷贝
Mat M(srcImg);
Mat M(srcImg, false);
Mat M = srcImg;
//注意:当将参数copyData设为true后,则为深拷贝(复制整个图像数据)
Mat M(srcImg, true);
3、Mat转IplImage
//注意:浅拷贝 - 同样只是创建图像头,而没有复制数据
Mat M;
IplImage img = M;
IplImage img = IplImage(M);
4、IplImage转CvMat
- //法一:cvGetMat函数
- IplImage* img;
- CvMat temp;
- CvMat* mat = cvGetMat(img, &temp); //深拷贝
- //法二:cvConvert函数
- CvMat *mat = cvCreateMat(img->height, img->width, CV_64FC3); //注意height和width的顺序
- cvConvert(img, mat); //深拷贝
//法一:cvGetMat函数
IplImage* img;
CvMat temp;
CvMat* mat = cvGetMat(img, &temp); //深拷贝
//法二:cvConvert函数
CvMat *mat = cvCreateMat(img->height, img->width, CV_64FC3);
//注意height和width的顺序
cvConvert(img, mat); //深拷贝
5、CvMat转IplImage
- //法一:cvGetImage函数
- CvMat M;
- IplImage* img = cvCreateImageHeader(M.size(), M.depth(), M.channels());
- cvGetImage(&M, img); //深拷贝:函数返回img
- //也可写成
- CvMat M;
- IplImage* img = cvGetImage(&M, cvCreateImageHeader(M.size(), M.depth(), M.channels()));
- //法二:cvConvert函数
- CvMat M;
- IplImage* img = cvCreateImage(M.size(), M.depth(), M.channels());
- cvConvert(&M, img); //深拷贝
//法一:cvGetImage函数
CvMat M;
IplImage* img = cvCreateImageHeader(M.size(), M.depth(), M.channels());
cvGetImage(&M, img); //深拷贝:函数返回img
//也可写成
CvMat M;
IplImage* img = cvGetImage(&M, cvCreateImageHeader(M.size(), M.depth(), M.channels()));
//法二:cvConvert函数
CvMat M;
IplImage* img = cvCreateImage(M.size(), M.depth(), M.channels());
cvConvert(&M, img); //深拷贝
最后注意:
1、Mat类型是自动内存管理,不需要显式释放(当然也可以手动调用release()方法强制Mat矩阵数据释放);而CvMat则需要调用cvReleaseMat(&cvmat)来释放,IplImage需要调用cvReleaseImage(&iplimage)来释放。2、建立CvMat矩阵时,第一个参数为行数,第二个参数为列数:
CvMat* cvCreateMat( int rows, int cols, int type );
3、建立IplImage图像时,CvSize第一个参数为宽度,即列数;第二个参数为高度,即行数:
IplImage* cvCreateImage(CvSize size, int depth, int channels );
CvSize cvSize( int width, int height );
4、IplImage内部buffer每行是按4字节对齐的,CvMat没有这个限制。