问题:12枚硬币,其中11枚真币1枚假币,现有一架天平,最少称多少次可以找出这枚假币并且知道假币和真币的相对重量
原理: 如果有3个硬币,并且知道假币轻重,那么只需要称一次就可以知道假币.
对12枚硬币编号1~12
- 解法一
- [ 1 ] [1] [1] 拿 1 2 3 4 和 5 6 7 8 称重
- 如果 a {a} a: 1 2 3 4 == 5 6 7 8 则假币在9 10 11 12中
- [ 2 ] [2] [2] 拿 1 2 3 和 9 10 11 称重
- 如果 b {b} b: 1 2 3 == 9 10 11 则12是假币
- [ 3 ] [3] [3] 拿 1 和 12 称重
- 如果 c {c} c: 1 > 12 假币是 12 且轻
- 如果 c {c} c: 1 < 12 假币
- [ 3 ] [3] [3] 拿 1 和 12 称重
- 如果 b {b} b: 1 2 3 == 9 10 11 则12是假币
- [ 2 ] [2] [2] 拿 1 2 3 和 9 10 11 称重
- 如果 a {a} a: 1 2 3 4 == 5 6 7 8 则假币在9 10 11 12中
- [ 1 ] [1] [1] 拿 1 2 3 4 和 5 6 7 8 称重