核心论点
《易经》中的“变爻”机制(即卦象中阴阳爻的动态变化)可以抽象为一种新型的优化算法,称为“变爻退火算法”。通过将变爻机制与模拟退火算法结合,可以为神经网络的训练提供一种全局优化方法,有效避免陷入局部最优解。
研究路径
-
变爻退火算法的数学建模
-
变爻机制的数学表达:
-
将变爻操作抽象为状态空间的随机跳跃
-
定义变爻概率与能量函数的关系
-
-
退火过程的优化:
-
结合模拟退火算法的温度下降策略
-
设计变爻退火算法的迭代规则
-
-
-
变爻退火算法与神经网络的结合
-
神经网络训练:
-
使用变爻退火算法优化神经网络的权重更新
-
验证变爻退火算法在神经网络训练中的性能
-
-
超参数优化:
-
将变爻退火算法应用于神经网络超参数(如学习率、层数)的优化
-
验证变爻退火算法在超参数优化中的效果
-
-
-
变爻退火算法在深度学习中的应用
-
图像识别:
-
使用变爻退火算法优化卷积神经网络(CNN)的训练
-
验证变爻退火算法在图像识别任
-
-