最长单调递增子序列问题

设计一个O(n2)复杂度的算法,找出由n个数组成的序列的最长单调递增子序列。

public class LIS {

	//测试数据1:3, 8, 10, 4, 12, 5, 6, 8
	//测试数据1:5, 2, 4, 6, 5, 1, 8
	//测试数据1:3, 8, 9, 10, 11, 4, 12, 5, 6, 8
	int [] a = new int[]{5, 2, 4, 6, 5, 1, 8};//存储数据
	int [] b = new int[a.length];//存储每个元素的最长单调递增子序列
	int [][] ab = new int[a.length][a.length];//存储每个元素的单调递增子序列值
	
	public void lis(){
		//查找每个元素的子序列
		b[0] = 0;
		for(int i = 0;i < a.length;i++){
			int k = 0;
			for(int j = 0;j < a.length;j++){
				if(j <= i && a[j] <= a[i] && a[j] > k){
					b[i]++;
					k = a[j];
					ab[i][j] = a[j];
				}else if(j > i && a[j] > a[i] && a[j] > k){
					b[i]++;
					k = a[j];
					ab[i][j] = a[j];
				}
			}
		}
		//查找最长子序列
		int max = b[0];//记录最大子序列值
		int ii = 0;//记录最大子序列值下标
		for(int i = 0;i < b.length;i++){
			//System.out.println("====="+b[i]);
			if(b[i] > max){
				max = b[i];
				ii = i;
			}
		}
		System.out.println("最长单调递增子序列长度:"+max);
//		for(int i = 0;i < a.length;i++){
//			for(int j = 0;j < b.length;j++){
//				System.out.print(ab[i][j]+" ");
//			}
//			System.out.println();
//		}
		System.out.print("最长单调递增子序列为:");
		for(int j = 0;j < a.length;j++){
			if(ab[ii][j] != 0){
				System.out.print(ab[ii][j]+" ");
			}
		}
	}
	
	public static void main(String[] args) {
		new LIS().lis();
	}
	
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值