最小生成树Kruskal算法实现+快排实现权值排序

本文详细介绍了如何使用Kruskal算法构建最小生成树,并结合快速排序优化边的权值排序,达到O(MlogM)的时间复杂度。
摘要由CSDN通过智能技术生成
要求要最少的边让图连通(任意两点之间可以互相到达)。要想让n个顶点的图连通,那么至少需要n-1条边。其实这里就是求一个图的最小生成树
基本思路:
首先按照边的权值进行排序按照升序,每次从剩余的边中选择权值较小且边的两个顶点不在同一个集合内的边(将所有的顶点放入一个并查集中,判断两个顶点是否连通,只需判断两个顶点是否在同一个集合中,即是否有共同的祖先,这样时间复杂度为O(logN))(就是不会产生回路的边),加入到生成树中,前提 就是每次都会判断各个顶点是否在各自的并查集中,直到加入了n-1条边为止。
Kruskal算法的时间复杂度:
对边进行快排O(MlogM),在m条边中找出n-1条边是O(MlogN),所有Kruskal算法的时间复杂度为O(MlogM+MlogN)。

通常M要比N大很多,因此最终时间复杂度为O(MlogM)。


#incl
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值