摘要
- 在正则表达式中,如果直接给出字符,就是精确匹配。
{m,n}?
对于前一个字符重复m
到n
次,并且取尽可能少的情况 在字符串'aaaaaa'
中,a{2,4}
会匹配 4 个a
,但a{2,4}?
只匹配 2 个a
。
^
表示行的开头,^\d
表示必须以数字开头。
$
表示行的结束,\d$
表示必须以数字结束。
你可能注意到了,py
也可以匹配'python'
-->py
;
但是加上^py$
就变成了整行匹配,就只能匹配'py'了,匹配'python'
时,就什么也得不到。
参考表
正则表达式特殊序列
![图片描述][1]
re模块
re.compile(pattern[, flags])
把正则表达式的模式和标识转化成正则表达式对象,供 match()
和 search()
这两个函数使用。
re 所定义的 flag 包括:
re.I 忽略大小写
re.L 表示特殊字符集 \w, \W, \b, \B, \s, \S 依赖于当前环境
re.M 多行模式
re.S 即为’ . ’并且包括换行符在内的任意字符(’ . ’不包括换行符)
re.U 表示特殊字符集 \w, \W, \b, \B, \d, \D, \s, \S 依赖于 Unicode 字符属性数据库
re.X 为了增加可读性,忽略空格和’ # ’后面的注释
以下两种用法结果相同:
(A)
compiled_pattern = re.compile(pattern)
result = compiled_pattern.match(string)
```
(B)
```
result = re.match(pattern, string)
```
由于Python的字符串本身也用\转义,所以要特别注意:
```
s = 'ABC\\-001' # Python的字符串
#对应的正则表达式字符串变成:
#'ABC\-001'
```
因此我们强烈建议使用Python的r前缀,就不用考虑转义的问题了
```
s = r'ABC\-001' # Python的字符串
# 对应的正则表达式字符串不变:
# 'ABC\-001'
```
### search
re.search(pattern, string[, flags])`
在字符串中查找匹配正则表达式模式的位置,返回` MatchObject `的实例,如果没有找到匹配的位置,则返回 `None`。
对于已编译的正则表达式对象来说`(re.RegexObject)`,有以下 `search `的方法:
`search (string[, pos[, endpos]])`
若` regex `是已编译好的正则表达式对象,`regex.search(string, 0, 50) `等同于 `regex.search(string[:50], 0)`。
```
>>> pattern = re.compile("a")
>>> pattern.search("abcde") # Match at index 0
>>> pattern.search("abcde", 1) # No match;
```
### match
re.match(pattern, string[, flags])
判断 pattern 是否在字符串开头位置匹配。对于 RegexObject,有:
match(string[, pos[, endpos]])
match() 函数只在字符串的开始位置尝试匹配正则表达式,也就是只报告从位置 0 开始的匹配情况,而 search() 函数是扫描整个字符串来查找匹配。**如果想要搜索整个字符串来寻找匹配,应当用 search()。**
```
>>> pattern.match('bca',2).group()
'a'
```
虽然,`match`默认是从开头匹配,但是,如果指定位置,仍然能成功;但是!`match`也是从指定位置开始匹配,不匹配仍然会失败,这一点就和`search`有区别啦。
`match()`方法判断是否匹配,如果匹配成功,返回一个`Match`对象,否则返回`None`。
```
test = '用户输入的字符串'
if re.match(r'正则表达式', test):
print('ok')
else:
print('failed')
```
### split
re.split(pattern, string[, maxsplit=0, flags=0])
此功能很常用,可以将将字符串匹配正则表达式的部分割开并返回一个列表。对 RegexObject,有函数:
split(string[, maxsplit=0])
**对于一个找不到匹配的字符串而言,split 不会对其作出分割**
```
>>> 'a b c'.split(' ')
['a', 'b', '', '', 'c']
```
这里用字符串自带的`split`方法就很不灵活。
```
>>> re.split(r'\s+', 'a b c')
['a', 'b', 'c']
```
看出差别了吧,很强大!
再来一个终极的:
```
>>> re.split(r'[\s\,\;]+', 'a,b;; c d')
['a', 'b', 'c', 'd']
```
`r'[\s\,\;]+'`的正则表达`式意思为:空格或者`,`或者`;`出现1次或1次以上都是满足条件的分割符号!所以,最后结果还是很干净。
### findall
`re.findall(pattern, string[, flags])`
在字符串中找到正则表达式所匹配的所有子串,并组成一个列表返回。同样 `RegexObject `有:
`findall(string[, pos[, endpos]])`
```
#get all content enclosed with [], and return a list
>>> pattern=re.compile(r'hh')
>>> pattern.findall('hhmichaelhh')
['hh', 'hh']
```
### finditer
`re.finditer(pattern, string[, flags])`
和 `findall` 类似,在字符串中找到正则表达式所匹配的所有子串,并组成一个迭代器返回。同样 `RegexObject` 有:
`finditer(string[, pos[, endpos]])`
### sub
`re.sub(pattern, repl, string[, count, flags])`
在字符串 `string` 中找到匹配正则表达式`pattern `的所有子串,用另一个字符串 `repl `进行替换。如果没有找到匹配 `pattern` 的串,则返回未被修改的 string。Repl 既可以是字符串也可以是一个函数。
返回值是替换后的新字符串。
对于 `RegexObject `有:
sub(repl, string[, count=0])
```
>>> pattern=re.compile(r'\d')
>>> pattern.sub('no','12hh34hh')
'nonohhnonohh'
>>> pattern.sub('no','12hh34hh',0)
'nonohhnonohh'
>>> pattern.sub('no','12hh34hh',count=0)
'nonohhnonohh'
>>> pattern.sub('no','12hh34hh',1)
'no2hh34hh'
```
通过上面的例子,可以看出,`count`是可以缺省的,同时,默认值是0,表示全部替换;否则,就是指定替换几个。
### subn
`re.subn(pattern, repl, string[, count, flags])`
该函数的功能和 sub() 相同,但它还返回新的字符串以及替换的次数。同样` RegexObject `有:
`subn(repl, string[, count=0])`
```
>>> pattern.subn('no','12hh34hh',count=0)
('nonohhnonohh', 4)
```
## 分组
除了简单地判断是否匹配之外,正则表达式还有提取子串的强大功能。用()表示的就是要提取的分组(Group)。比如:
`^(\d{3})-(\d{3,8})$`分别定义了两个组,可以直接从匹配的字符串中提取出区号和本地号码:
```
>>> m = re.match(r'^(\d{3})-(\d{3,8})$', '010-12345')
>>> m
<_sre.SRE_Match object; span=(0, 9), match='010-12345'>
>>> m.group(0)
'010-12345'
>>> m.group(1)
'010'
>>> m.group(2)
'12345'
>>> m.groups()
('010', '12345')
```
通过实验,如果不用括号,得到的`Match`对象课可以使用例如a.group(0)或者a.group()但是,使用a.group(1)就会报错的。
## 贪婪匹配
正则匹配默认是贪婪匹配,也就是匹配尽可能多的字符。举例如下,匹配出数字后面的`0`:
```
>>> re.match(r'^(\d+)(0*)$', '102300').groups()
('102300', '')
```
由于`\d+`采用贪婪匹配,直接把后面的`0`全部匹配了,结果`0*`只能匹配空字符串了。
必须让`\d+`采用非贪婪匹配(也就是尽可能少匹配),才能把后面的`0`匹配出来,加个`?`就可以让`\d+`采用非贪婪匹配:
```
>>> re.match(r'^(\d+?)(0*)$', '102300').groups()
('1023', '00')
```
- [SF-正则表达式的贪婪\非贪婪模式怎么理解?](https://segmentfault.com/q/1010000006066658)
## Python正则表达式学习资源
![](http://ww4.sinaimg.cn/large/6d9475f6gw1f669w5f8vtj20m71brniv.jpg)
- [廖雪峰-正则表达式](http://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000/00143193331387014ccd1040c814dee8b2164bb4f064cff000)
- [IBM-使用 Python 模块 re 实现解析小工具](https://www.ibm.com/developerworks/cn/opensource/os-cn-pythonre/)
- [deerchao-则表达式30分钟入门教程](http://www.cnblogs.com/deerchao/archive/2006/08/24/zhengzhe30fengzhongjiaocheng.html)
- [deerchao-正则表达式30分钟入门教程](http://deerchao.net/tutorials/regex/regex.htm)
- [静觅-爬虫入门七之正则表达式](http://cuiqingcai.com/977.html)
- [Python中re的match、search、findall、finditer区别](https://blog.csdn.net/djskl/article/details/44357389)
- [Python正则表达式与re模块](https://www.xzymoe.com/python-regex-re-module/)
[1]: /img/bVzBRO