FFT中卷积运算

转载

信号处理中的一个重要运算是卷积.初学卷积的时候,往往是在连续的情形, 

  两个函数f(x),g(x)的卷积,是∫f(u)g(x-u)du 
  当然,证明卷积的一些性质并不困难,比如交换,结合等等,但是对于卷积运算的来处,初学者就不甚了了。 
   
  其实,从离散的情形看卷积,或许更加清楚, 
  对于两个序列f[n],g[n],一般可以将其卷积定义为s[x]= ∑f[k]g[x-k] 
   
  卷积的一个典型例子,其实就是初中就学过的多项式相乘的运算, 
  比如(x*x+3*x+2)(2*x+5) 
  一般计算顺序是这样, 
  (x*x+3*x+2)(2*x+5) 
  = (x*x+3*x+2)*2*x+(x*x+3*x+2)*5 
  = 2*x*x*x+3*2*x*x+2*2*x+ 5*x*x+3*5*x+10 
  然后合并同类项的系数, 
  2 x*x*x 
  3*2+1*5 x*x 
  2*2+3*5 x 
  2*5 
  ---------- 
  2*x*x*x+11*x*x+19*x+10 
   
  实际上,从线性代数可以知道,多项式构成一个向量空间,其基底可选为 
  {1,x,x*x,x*x*x,...} 
  如此,则任何多项式均可与无穷维空间中的一个坐标向量相对应, 
  如,(x*x+3*x+2)对应于 
  (1 3 2), 
  (2*x+5)对应于 
  (2,5). 
   
  线性空间中没有定义两个向量间的卷积运算,而只有加法,数乘两种运算,而实际上,多项式的乘法,就无法在线性空间中说明.可见线性空间的理论多么局限了. 
  但如果按照我们上面对向量卷积的定义来处理坐标向量, 
  (1 3 2)*(2 5) 
  则有 
  2 3 1 
  _ _ 2 5 
  -------- 
      2 
   
   
  2 3 1 
  _ 2 5 
  ----- 
    6+5=11 
   
  2 3 1 
  2 5 
  ----- 
  4+15 =19 
   
   
  _ 2 3 1 
  2 5 
  ------- 
    10 
   
   或者说, 
  (1 3 2)*(2 5)=(2 11 19 10) 
   
  回到多项式的表示上来, 
  (x*x+3*x+2)(2*x+5)= 2*x*x*x+11*x*x+19*x+10 
   
  似乎很神奇,结果跟我们用传统办法得到的是完全一样的. 
  换句话 ,多项式相乘,相当于系数向量的卷积. 
   
  其实,琢磨一下,道理也很简单, 
  卷积运算实际上是分别求 x*x*x ,x*x,x,1的系数,也就是说,他把加法和求和杂合在一起做了。(传统的办法是先做乘法,然后在合并同类项的时候才作加法) 
  以x*x的系数为例,得到x*x,或者是用x*x乘5,或者是用3x乘2x,也就是 
  2 3 1 
  _ 2 5 
  ----- 
   6+5=11 
  其实,这正是向量的内积.如此则,卷积运算,可以看作是一串内积运算.既然是一串内积运算,则我们可以试图用矩阵表示上述过程。 
   
  [ 2 3 1 0 0 0] 
  [ 0 2 3 1 0 0]==A 
  [ 0 0 2 3 1 0] 
  [ 0 0 0 2 3 1] 
   
  [0 0 2 5 0 0]' == x 
   
  b= Ax=[ 2 11 19 10]' 
   
  采用行的观点看Ax,则b的每行都是一个内积。 
  A的每一行都是序列[2 3 1]的一个移动位置。 
   
  --------- 
   
  显然,在这个特定的背景下,我们知道,卷积满足交换,结合等定律,因为,众所周知的,多项式的乘法满足交换律,结合律.在一般情形下,其实也成立. 
   
  在这里,我们发现多项式,除了构成特定的线性空间外,基与基之间还存在某种特殊的联系,正是这种联系,给予多项式空间以特殊的性质. 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值