信号处理中的一个重要运算是卷积.初学卷积的时候,往往是在连续的情形,
两个函数f(x),g(x)的卷积,是∫f(u)g(x-u)du当然,证明卷积的一些性质并不困难,比如交换,结合等等,但是对于卷积运算的来处,初学者就不甚了了。
其实,从离散的情形看卷积,或许更加清楚,
对于两个序列f[n],g[n],一般可以将其卷积定义为s[x]= ∑f[k]g[x-k]
卷积的一个典型例子,其实就是初中就学过的多项式相乘的运算,
比如(x*x+3*x+2)(2*x+5)
一般计算顺序是这样,
(x*x+3*x+2)(2*x+5)
= (x*x+3*x+2)*2*x+(x*x+3*x+2)*5
= 2*x*x*x+3*2*x*x+2*2*x+ 5*x*x+3*5*x+10
然后合并同类项的系数,
2 x*x*x
3*2+1*5 x*x
2*2+3*5 x
2*5
----------
2*x*x*x+11*x*x+19*x+10
实际上,从线性代数可以知道,多项式构成一个向量空间,其基底可选为
{1,x,x*x,x*x*x,...}
如此,则任何多项式均可与无穷维空间中的一个坐标向量相对应,
如,(x*x+3*x+2)对应于
(1 3 2),
(2*x+5)对应于
(2,5).
线性空间中没有定义两个向量间的卷积运算,而只有加法,数乘两种运算,而实际上,多项式的乘法,就无法在线性空间中说明.可见线性空间的理论多么局限了.
但如果按照我们上面对向量卷积的定义来处理坐标向量,
(1 3 2)*(2 5)
则有
2 3 1
_ _ 2 5
--------
2
2 3 1
_ 2 5
-----
6+5=11
2 3 1
2 5
-----
4+15 =19
_ 2 3 1
2 5
-------
10
或者说,
(1 3 2)*(2 5)=(2 11 19 10)
回到多项式的表示上来,
(x*x+3*x+2)(2*x+5)= 2*x*x*x+11*x*x+19*x+10
似乎很神奇,结果跟我们用传统办法得到的是完全一样的.
换句话 ,多项式相乘,相当于系数向量的卷积.
其实,琢磨一下,道理也很简单,
卷积运算实际上是分别求 x*x*x ,x*x,x,1的系数,也就是说,他把加法和求和杂合在一起做了。(传统的办法是先做乘法,然后在合并同类项的时候才作加法)
以x*x的系数为例,得到x*x,或者是用x*x乘5,或者是用3x乘2x,也就是
2 3 1
_ 2 5
-----
6+5=11
其实,这正是向量的内积.如此则,卷积运算,可以看作是一串内积运算.既然是一串内积运算,则我们可以试图用矩阵表示上述过程。
[ 2 3 1 0 0 0]
[ 0 2 3 1 0 0]==A
[ 0 0 2 3 1 0]
[ 0 0 0 2 3 1]
[0 0 2 5 0 0]' == x
b= Ax=[ 2 11 19 10]'
采用行的观点看Ax,则b的每行都是一个内积。
A的每一行都是序列[2 3 1]的一个移动位置。
---------
显然,在这个特定的背景下,我们知道,卷积满足交换,结合等定律,因为,众所周知的,多项式的乘法满足交换律,结合律.在一般情形下,其实也成立.
在这里,我们发现多项式,除了构成特定的线性空间外,基与基之间还存在某种特殊的联系,正是这种联系,给予多项式空间以特殊的性质.