【Python编程】一段绳子剪成三段,求能组成三角形的概率

在网上看到字节有一个关于概率的面试题。题目为,将一个绳子随机剪成三段,这三段能够组成一个三角形的概率,并用你熟悉的代码实现。

这本质上是一个数学题,假设绳长为1,绳长不为1可以等比例取之。想要三段绳子长度能组成三角形,就是要三条边长a.b.c满足a>0,b>0,c>0,且a+b>c,b+c>a,a+c>b,a+b+c=1。通过计算这几个不等式可知,其必要条件是a<1/2,b<1/2,c<1/2,也就是三条边最大长度都小于1/2。

所以我们可以这样编程,随机取两个0到1之间的小数,因为随机取的两个数相等的情况为零,所以不用判断其相等的情况。这两个数就相当于绳子的两个断点到一个端点的长度与绳长的比例。然后判断三条绳长的最大值小于1/2,即可将计数器加1。具体编程如下。

# 将一根绳子随机割成三段,求这三段可以拼成三角形的概率

import random

def rope_triangle():
    # 随机的次数
    n = 100000

    # 可以组成三角形的次数
    triangle_times = 0

    for i in range(n):
        # 随机取两个小数,这两个数为取整根绳长的比例,因为取的是小数,这两个数相等的概率为0,所以不用判断两数一样的情况
        random_a = random.random()
        random_b = random.random()
        print(random_a, random_b)

        # 判断最大值最小值,用于取三个绳长的长度
        max_ = max(random_a, random_b)
        min_ = min(random_a, random_b)

        # 取三段绳长分别为0到最小的数之间长度为第一段绳长,最小数到最大数中间长度为第二段绳长,最大数到1之间的长度为第三段绳长
        segment_a = min_
        segment_b = max_ - min_
        segment_c = 1 - max_

        # 容易判断,当这三段长度的最大值小于0.5时,可以组成三角形
        if max(segment_a, segment_b, segment_c) < 0.5:
            triangle_times += 1

    # 计算概率
    print(triangle_times / n)

if __name__ == '__main__':
    rope_triangle()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值