- 博客(33)
- 资源 (3)
- 收藏
- 关注
原创 dataset读取不定尺寸图片的tfrecord文件
1.问题描述:转载请注明~大多数情况下,我们会在生成tfrecord文件之前加载图片数据时,就将图片尺寸处理好,例如尺寸reshape为[224,224,3],然后存储在tfrecord中。这种方式,优点是避免很多后续shape uncompatible问题;缺点是,这会限制网络模型输入,每修改一次模型输入shape都要重新生成tfrecord文件。针对这种情况,我总结一种dataset读...
2019-07-23 17:51:00 754
翻译 caffe框架源码目录结构
先自顶向下捋清楚框架结构:工程目录下文件夹data/ 用于存放下载的训练数据docs/ 帮助文档examples/ 代码样例matlab/ MATLAB接口文件python/ PYTHON接口文件models/ 一些配置好的模型参数scripts/ 一些文档和数据会用到的脚本tools/ 保存的是用于生成二进制处...
2018-10-07 16:15:52 531
翻译 protocol buffer编码格式分析
1.protocol buffer编码背景Protocol Buffer(PB)是google 的一种数据交换的格式,它独立于语言,独立于平台。可以理解为一种信源编码方式,就是将待传输的信源符号经过某种变换,转换成码流进行传输的这个变换过程。信源编码可分为两类:有损编码与无损编码,PB属于无损编码,在无损编码中,又分为定长编码和变长编码,定长编码就是一个符号变换后的码字的比特长度是固定的,比如A...
2018-10-06 20:55:10 2704
原创 网易算法岗2018秋招两道笔试题
1./*小易立方体:每次操作从某塔上取下一块立方体放到lingyige塔上;其中最高的塔减去最低的塔为不稳定值 输入:n,k分别为塔数和最大操作次数; 输出:不稳定值,操作次数 每次操作的塔位置 分析:对每次操作暴力遍历最大值和最小值;最大值+1,最小值-1; 边界条件:直至操作次数num=k或者不稳定值为0或1;*/#include "stdafx.h"#includ...
2018-08-20 12:24:25 1581
原创 贪心选择、动态规划、分治及回溯法的理解
1.算法特征分治算法:分治算法特征:1)规模如果很小,则很容易解决。//一般问题都能满足2)大问题可以分为若干规模小的相同问题。//前提3)利用子问题的解,可以合并成该问题的解。//关键4)分解出的各个子问题相互独立,子问题不再包含公共子问题。 //效率高低上述的第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;第二条特征是...
2018-08-14 22:04:36 1709
翻译 图及二叉树的遍历及其相关应用
1.二叉树遍历2.图的遍历1.1 图的存储参考链接:https://blog.csdn.net/dengpei187/article/details/51899550 1)邻接矩阵typedef struct{ VertexType vexes[MAX]; //顶点表 EdgeType arc[MAX][MAX]; //邻接矩阵 int numVert...
2018-08-03 19:37:04 465
翻译 各排序算法总结及实现
1. 插入排序(InsertSort)插入排序通过把序列中的值插入一个已经排序好的序列中,直到该序列的结束。插入排序是对冒泡排序的改进。它比冒泡排序快2倍。一般不用在数据大于1000的场合下使用插入排序,或者重复排序超过200数据项的序列。 //遍历数组,遍历到i时,a0,a1…ai-1是已经排好序的,取出ai,从ai-1开始向前和每个比较大小,如果小于,则将此位置元素向后移动,继续先前比较...
2018-07-20 21:27:12 246
原创 caffe模型预测及其问题解决
1.修改网络文件deploy.prototxt(以一个简单地卷积网络结构为例,主要修改input层和输出softmax层)layer {#修改这里1 name: "data" type: "Input" top: "data" input_param { shape: { dim: 1 dim: 3 dim: 224 dim: 224 } }}layer { nam..
2018-07-02 22:39:30 1137
翻译 L1与L2正则化总结
1.过拟合的基础概念: 首先,用一个例子来理解什么是过拟合,假设我们要根据特征分类{男人X,女人O}。 请看下面三幅图,x1、x2、x3: 这三幅图很容易理解: 1、 图x1明显分类的有点欠缺,有很多的“男人”被分类成了“女人”。 2、 图x2虽然有两个点分类错误,但是能够理解,毕竟现实世界有噪音干扰,比如有些人男人留长发、化妆、人妖等等。3、 图x3分类全部是正确的,但是看着这副图...
2018-03-29 19:19:37 610
原创 caffe学习系列之关于实验的一些总结
(最近导师急哄哄的让10天之内赶出一篇论文,就大大加快了实验的力度,但是情急之下各种失误不知道重头再来了多少次。。) 本人做的实验是关于表情分类识别的,下面一些机械试验中的几点总结。1.关于卷积网络的输入:我试验需要两个网络的融合(某fc层特征拼接),之前两个子网络的训练数据输入格式分别为lmdb,hdf5,着急两个网络融合后该怎么一对一的输入,最后采用hdf5的格式,hdf5格式的输入支持多to
2017-12-11 20:52:54 433
原创 caffe学习系列:python代码收藏
1.批量修改(重命名)文件名# -*- coding: cp936 -*-import ospath = 'D:\\图片\\'for file in os.listdir(path): if os.path.isfile(os.path.join(path,file))==True: if file.find('.')<0: newname=file+'rs
2017-12-04 15:59:38 306
原创 caffe学习系列:网络融合
一,关于网络融合分别训练了两个caffemodle,如何使用这两个caffemodel初始化这个大的网络的不同子部分(fine-tuning)。请问该如何操作? 1)caffe -weights 可以跟多个caffemodel,用”,”隔开 2)读取caffemodel并合并两个model数据,可用于初始化两个不同子部分,enny402的博客中写了用python将caffemodel读取二,关于
2017-11-28 22:05:44 1793
原创 caffe训练绘制accuracy和loss曲线及报错处理
1.采用caffe自带的方法绘制训练过程的loss和accuracy曲线1)首先打印训练过程中的日志log文件: 在训练代码中添加如下两种(任一)代码:#!/bin/bashGLOG_logtostderr=0 GLOG_log_dir=/home/hsm/project/facialexpress/convnet1/Log/ \/home/hsm/project/facialexpress/
2017-11-26 14:55:24 896
原创 caffe学习系列--层解读
1.accuracy layers层类型:Accuracylayer { name: "accuracy" type: "Accuracy" bottom: "fc8" bottom: "label" top: "accuracy" include { phase: TEST }}可以看到,caffe中计算Accuracy时,是通过比较最后一个...
2017-11-07 21:52:02 506 1
翻译 c++如何写头文件.h
按照本人现在的应用水平删减改编自博客:http://blog.csdn.net/guoyong10721073/article/details/25245293一、C++编译模式通常,在一个C++程序中,只包含两类文件——.cpp文件和.h文件。其中,.cpp文件被称作C++源文件,里面放的都是C++的源代码;而.h文件则被称作C++头文件,里面放的也是C++的源代码。 C+ +语言支持“分别编译
2017-10-31 17:16:02 55307 5
原创 深度学习系列之(dlib+opencv)代码收藏
1. dlib::array2d 与 cv::Mat 互转dlib::array2d is an image already, you can use it for any dlib's image functions//load image:dlib::array2d<dlib::rgb_pixel> img_rgb;dlib::load_image(img_rgb, "test_image.
2017-10-23 14:22:04 3175 1
原创 caffe学习系列2—步骤记录
1.为训练做准备工作参考链接:http://blog.csdn.net/Losteng/article/details/50799998?ref=myread 先写上caffe训练命令,如下:sudo /home/caffe/caffe/build/tools/caffe train -solver data/myfile/solver.prototxt其中solver.prototxt文件会调用
2017-10-20 22:27:21 263
原创 caffe训练常见错误:
更多错误参见: http://www.cnblogs.com/maohai/p/6453417.html1.训练结果accuracy一直为零,loss一直为87.3365 1)标签问题:图像分类的标签要从0开始; 2)网络最后一层的num_output值要和标签的值域一致(表示分类个数) 3)bacth_size改大(保证一次测试(验证),batch_size*test_iter>=测试集图
2017-10-17 18:37:27 2333
转载 深度学习系列之知识补充
迁移学习有效性依据: 因为现有的机器学习,特别是深度学习的各种模型,在能充分满足设计时的任务需求之外,往往具备稍加修改就能适用类似任务的能力。这种可能性,就为节省研发资源,以及将大数据机器学习成果转移到小数据、定制化应用等等提供了一个便捷的渠道。类比人类活学活用的智能:比如一个人扎实地学会了蛙泳,只需要稍加练习,也能较快掌握自由泳的技巧;一个人学会了打网球,那么要学习打壁球也非常容易。这种举一反三
2017-10-17 15:03:21 358
翻译 一些常用的字符串操作
(真正开始自己做项目,写代码了,才发现要注意的细节很多多,字符串操作很重要,汇总记下来,预防老年痴呆~~)1.按索引提取子串(文件名) int index = string(ch).find_last_of('\\');//ch转换为string,并定位最后一个\\; string imgname = string(ch).substr(index + 1, stri...
2017-09-29 20:24:17 662 2
翻译 caffe学习系列一——图像预处理
1.批量读取文件夹内文件:(windows下)1)读取某给定路径下所有文件夹与文件名称,并带完整路径,写入txt文件。代码如下: 1 void getAllFiles(string path, vector<string>& files) { 2 //文件句柄 3 long hFile = 0; 4 //文件信息 5 struct _finddata_t fi
2017-09-28 21:15:17 2773
转载 ImportError: No module named caffe 的解决方案
一、python导入caffe报错:ImportError: No module named caffe 的解决方案 这种情况一般是没有把caffe中的和python相关的内容的路径添加到python的编译路径中。可以使用以下方式解决问题(参考链接:http://blog.csdn.net/striker_v/article/details/51596628): (1)临时方案(重启pyth
2017-06-27 10:46:19 12982
转载 linux 中更改用户权限和用户组的命令实例--chmod,chgrp应用
1.目录及文件权限增加 增加权限给当前用户: chmod +wx filename 修改用户组: chgrp -R 组名 文件夹名 修改用户名:chown -R 所有者用户名.组名 文件夹名称 例如:chown -R zdz.nginx KooBox2.用户权限更改 语法:chmod [who] [+ | - | =] [mode] 文件名 在终端
2017-06-26 22:24:00 3631
转载 bash shell 文件语法解读与总结
1. bash基本语法下面看一个简单的shell文件(HelloWorld.sh): #!/bin/bash #This is an example echo Hello World(1)“#!”是说明这个文件类型的,Linux系统根据“#!”及其后面的字符串确定该文件的类型,/bin/bash表名该文件是一个bash程序,需要由/bin目录下的bas
2017-06-24 17:42:14 4054
转载 公认的计算机视觉三大会议分别为ICCV,ECCV,CVPR
转载 ▼ 标签: 计算机视觉 目前,公认的计算机视觉三大会议分别为ICCV,ECCV,CVPR。1、ICCV ICCV的全称是 IEEE International Conference on Computer Vision,国际计算机视觉大会,是计算机视觉方向的三大顶级会议之一,通常每两年召开一次,2005 年 10 月曾经在北京召开。会议收录论文的内容包括:底层视觉与感知,颜色、光照与纹
2017-05-17 16:29:05 6038
原创 LeNet网络模型各层及参数解读
最近开始学习深度学习,先从各种网络模型开始学起!一、先详细讲解最简单的LeNet网络(采用最常见的LeNet网络图形和BP算法的求解过程:) 1.LeNet-5含输入层共有8层,其中C1,C3,C5为卷积层,S2,S4为降采样层,F6为全连接层,还有一个输出层。每一个层都有多个Feature Map(每个Feature Map中含有多个神经元),输入通过一种过滤器作用,提取输入的一种特征,得到
2017-05-01 19:43:49 5652
原创 opencv使用小技巧
opencv使用小技巧1.OpenCV把一个图像的一小块区域拷贝到另一个图像的指定区域:IplImage* img 从图里面截取矩形的操作一般是这个样子的:(1)CvSize size= cvSize(40,50);//区域大小cvSetImageROI(pSrc,cvRect(60,70,size.width, size.height));//设置源图像ROII...
2017-04-28 10:40:13 543
原创 视频的读取与保存opencv
#include <stdlib.h> #include <stdio.h> #include <math.h> #include "opencv2/opencv.hpp" int main(int argc, char *argv[]) { cv::VideoCapture capture("E:\\a3.mp4");//读入视频文件 //c
2017-04-26 10:17:01 1794
原创 图像二值化常用方法介绍
1.图像二值化常用方法原理介绍图像二值化是图像分析与处理中最常见最重要的处理手段,二值处理方法也非常多。越精准的方法计算量也越大。1.1基于RGB色彩空间(主要是阈值的选取) 方法一:该方法非常简单,对RGB彩色图像灰度化以后,扫描图像的每个像素值,值小于127的将像素值设为0(黑色),值大于等于127的像素值设为255(白色)。该方法的好处是计算量少速度快。缺点更多首先阈值为127没有任何理由可
2017-04-22 16:52:24 13418
原创 python安装流程+pythonIDE+第三模块包导入
1.官网下载pythonIDE,我用的是pycharm(社区版免费),连接:http://www.jetbrains.com/pycharm/download/#section=windows2.下载python解释器,连接:我用的2.7.12版本 此步需要配置环境变量3.下载pip工具,用于导入所需要的第三方模块包,cmd下命令下载包:如pip install nump
2017-01-13 15:39:50 1822
转载 uml类图详解
转载,原文地址:http://www.cnblogs.com/silent2012/archive/2011/09/07/2169946.html1、什么是类图 类图(Class diagram)主要用于描述系统的结构化设计。类图也是最常用的UML图,用类图可以显示出类、接口以及它们之间的静态结构和关系。2、类图的元素 在类图中一共包含了以下几种模型元素,分别是
2016-12-11 21:36:44 301
转载 图像处理入门杂谈
浅谈图像处理方向的就业前景[转)标签: 图像处理processingimage医疗matlabcompression2012-05-24 09:55 2193人阅读 评论(1)收藏举报分类: 转载(5) 就我看来,个人觉得图像处理的就业还是不错的。首先可以把图像看成二维、三维或者更高维的信号,从这个意义上来说,图像
2016-09-16 15:15:46 710
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人