图像处理
文章平均质量分 70
青天白鹭
任何时候都要踏实、不燥,偶尔抬头!
展开
-
视频的读取与保存opencv
#include <stdlib.h> #include <stdio.h> #include <math.h> #include "opencv2/opencv.hpp" int main(int argc, char *argv[]) { cv::VideoCapture capture("E:\\a3.mp4");//读入视频文件 //c原创 2017-04-26 10:17:01 · 1794 阅读 · 0 评论 -
opencv使用小技巧
opencv使用小技巧1.OpenCV把一个图像的一小块区域拷贝到另一个图像的指定区域:IplImage* img 从图里面截取矩形的操作一般是这个样子的:(1)CvSize size= cvSize(40,50);//区域大小cvSetImageROI(pSrc,cvRect(60,70,size.width, size.height));//设置源图像ROII...原创 2017-04-28 10:40:13 · 543 阅读 · 0 评论 -
深度学习系列之知识补充
迁移学习有效性依据: 因为现有的机器学习,特别是深度学习的各种模型,在能充分满足设计时的任务需求之外,往往具备稍加修改就能适用类似任务的能力。这种可能性,就为节省研发资源,以及将大数据机器学习成果转移到小数据、定制化应用等等提供了一个便捷的渠道。类比人类活学活用的智能:比如一个人扎实地学会了蛙泳,只需要稍加练习,也能较快掌握自由泳的技巧;一个人学会了打网球,那么要学习打壁球也非常容易。这种举一反三转载 2017-10-17 15:03:21 · 358 阅读 · 0 评论 -
一些常用的字符串操作
(真正开始自己做项目,写代码了,才发现要注意的细节很多多,字符串操作很重要,汇总记下来,预防老年痴呆~~)1.按索引提取子串(文件名) int index = string(ch).find_last_of('\\');//ch转换为string,并定位最后一个\\; string imgname = string(ch).substr(index + 1, stri...翻译 2017-09-29 20:24:17 · 662 阅读 · 2 评论 -
bash shell 文件语法解读与总结
1. bash基本语法下面看一个简单的shell文件(HelloWorld.sh): #!/bin/bash #This is an example echo Hello World(1)“#!”是说明这个文件类型的,Linux系统根据“#!”及其后面的字符串确定该文件的类型,/bin/bash表名该文件是一个bash程序,需要由/bin目录下的bas转载 2017-06-24 17:42:14 · 4054 阅读 · 0 评论 -
图像处理入门杂谈
浅谈图像处理方向的就业前景[转)标签: 图像处理processingimage医疗matlabcompression2012-05-24 09:55 2193人阅读 评论(1)收藏举报分类: 转载(5) 就我看来,个人觉得图像处理的就业还是不错的。首先可以把图像看成二维、三维或者更高维的信号,从这个意义上来说,图像转载 2016-09-16 15:15:46 · 710 阅读 · 0 评论 -
uml类图详解
转载,原文地址:http://www.cnblogs.com/silent2012/archive/2011/09/07/2169946.html1、什么是类图 类图(Class diagram)主要用于描述系统的结构化设计。类图也是最常用的UML图,用类图可以显示出类、接口以及它们之间的静态结构和关系。2、类图的元素 在类图中一共包含了以下几种模型元素,分别是转载 2016-12-11 21:36:44 · 301 阅读 · 0 评论 -
python安装流程+pythonIDE+第三模块包导入
1.官网下载pythonIDE,我用的是pycharm(社区版免费),连接:http://www.jetbrains.com/pycharm/download/#section=windows2.下载python解释器,连接:我用的2.7.12版本 此步需要配置环境变量3.下载pip工具,用于导入所需要的第三方模块包,cmd下命令下载包:如pip install nump原创 2017-01-13 15:39:50 · 1822 阅读 · 0 评论 -
图像二值化常用方法介绍
1.图像二值化常用方法原理介绍图像二值化是图像分析与处理中最常见最重要的处理手段,二值处理方法也非常多。越精准的方法计算量也越大。1.1基于RGB色彩空间(主要是阈值的选取) 方法一:该方法非常简单,对RGB彩色图像灰度化以后,扫描图像的每个像素值,值小于127的将像素值设为0(黑色),值大于等于127的像素值设为255(白色)。该方法的好处是计算量少速度快。缺点更多首先阈值为127没有任何理由可原创 2017-04-22 16:52:24 · 13418 阅读 · 0 评论 -
LeNet网络模型各层及参数解读
最近开始学习深度学习,先从各种网络模型开始学起!一、先详细讲解最简单的LeNet网络(采用最常见的LeNet网络图形和BP算法的求解过程:) 1.LeNet-5含输入层共有8层,其中C1,C3,C5为卷积层,S2,S4为降采样层,F6为全连接层,还有一个输出层。每一个层都有多个Feature Map(每个Feature Map中含有多个神经元),输入通过一种过滤器作用,提取输入的一种特征,得到原创 2017-05-01 19:43:49 · 5652 阅读 · 0 评论 -
dataset读取不定尺寸图片的tfrecord文件
1.问题描述:转载请注明~大多数情况下,我们会在生成tfrecord文件之前加载图片数据时,就将图片尺寸处理好,例如尺寸reshape为[224,224,3],然后存储在tfrecord中。这种方式,优点是避免很多后续shape uncompatible问题;缺点是,这会限制网络模型输入,每修改一次模型输入shape都要重新生成tfrecord文件。针对这种情况,我总结一种dataset读...原创 2019-07-23 17:51:00 · 754 阅读 · 0 评论