• 博客(0)
  • 资源 (14)

空空如也

常见数据库种类及介绍

只是简单的,介绍了目前常用的数据库的种类。

2014-03-31

w32pl626.exe

适合新手的prolog,而且安装方便,适合32位的操作系统!

2014-01-13

amziprolog.zip

编写prolog程序的强大工具,很容易安装,而且占内存小!

2014-01-13

故障树的综述

Fault tree analysis (FTA) is a very prominent method to analyze the risks related to safety and economically critical assets, like power plants, airplanes, data centers and web shops. FTA methods comprise of a wide variety of modeling and analysis techniques, supported by a wide range of software tools. This paper surveys over 150 papers on fault tree analysis, providing an in-depth overview of the state-of-the-art in FTA. Concretely, we review standard fault trees, as well as extensions such as dynamic FT, repairable FT, and extended FT. For these models, we review both qualitative analysis methods, like cut sets and common cause failures, and quantitative techniques, including a wide variety of stochastic methods to compute failure probabilities. Numerous examples illustrate the various approaches, and tables present a quick overview of results.

2016-05-12

数值分析作业三

解非线性方程组 将给定的 当作已知量代入题目给定的非线性方程组,求得与 相对应的数组t[i][j],u[i][j]。

2016-05-12

数值分析第二次大作业

试求矩阵 的全部特征值,并对其中的每一个实特征值求相应的特征向量。

2016-05-12

北航2010-2011年研究生数值分析期末模拟试卷1-3

北航2010-2011年研究生数值分析期末模拟试卷1-3

2016-05-12

详解MATLAB在最优化计算中的应用

本书首先介绍MATLAB的基本使用方法和程序设计基础,然后将MATLAB与最优化计算相结合,基于最优化理论与方法,讲解如何使用MATLAB求解最优化领域的实际问题。

2016-05-12

Building Expert Systems in Prolog

When I compare the books on expert systems in my library with the production expert systems I know of, I note that there are few good books on building expert systems in Prolog. Of course, the set of actual production systems is a little small for a valid statistical sample, at least at the time and place of this writing – here in Germany, and in the first days of 1989. But there are at least some systems I have seen running in real life commercial and industrial environments, and not only at trade shows.

2016-05-12

人工智能及其应用

这是对第二版的修订。除了对传统人工智能的知识表示方法和搜索推理技术作系统介绍外,还补充了不少最新的技术进展,如对计算智能进行了系统的阐述;增加了分布式人工智能与Agent系统、进化计算、知识发现和数据挖掘等内容,同时,也对各种学派的认知作了概况。

2016-05-12

专家系统及常用开发语言

这是一篇论文。专家系统是人工智能的一个重要分支,是研究的热点。研究人员采用了各种各样的语言进行软件的开发。为了给研究人员寻找更加适合所开发系统的语言,介绍了专家系统的概念和结构,分析了几种常见的专家 系统开发语言,比较了其优缺点,最后给出了不同专家系统的开发建议。

2016-05-12

高级人工智能

本书是《知识工程》《神经计算》的姐妹篇,系统地论述了人工智能研究的最新成果、反映了当前人工智能研究的热点。全书共分十二章,分别讨论了人工智能的认知问题、人工智能逻辑、约束推理、定性推理、基于范例推理、归纳学习、类比学习、解释学习、知识发现和数据开采、分布式人工智能、进化计算和人工生命。

2016-05-12

软件测试的艺术

《软件测试的艺术》(原书第2版)成功、有效地进行软件测试的实用策略和技术:,    基本的测试原理和策略      验收测试,    程序检查和走查         安装测试,    代码检查            模块(单元)测试,    错误列表            测试规划与控制,    同行评分            独立测试机构,    黑盒、白盒测试         调试原理,    错误猜测            错误分析,    自顶向下与自底向上测试     极限测试,    高级测试            测试因特网应用系统,    功能和系统测试         电子商务体系结构的高级测试

2016-05-12

WEKA Revised:Data Mining Practical Machine Learning Tools and Techniques(3rd)第三版

The convergence of computing and communication has produced a society that feeds on information. Yet most of the information is in its raw form: data. If data is characterized as recorded facts, then information is the set of patterns, or expectations, that underlie the data. There is a huge amount of information locked up in databases—information that is potentially important but has not yet been discovered or articulated. Our mission is to bring it forth. Data mining is the extraction of implicit, previously unknown, and potentially useful information from data. The idea is to build computer programs that sift through databases automatically, seeking regularities or patterns. Strong patterns, if found, will likely generalize to make accurate predictions on future data. Of course, there will be problems. Many patterns will be banal and uninteresting. Others will be spurious, contingent on accidental coincidences in the particular dataset used. And real data is imperfect: Some parts will be garbled, some missing. Anything that is discovered will be inexact: There will be exceptions to every rule and cases not covered by any rule. Algorithms need to be robust enough to cope with imperfect data and to extract regularities that are inexact but useful. Machine learning provides the technical basis of data mining. It is used to extract information from the raw data in databases—information that is expressed in a comprehensible form and can be used for a variety of purposes. The process is one of abstraction: taking the data, warts and all, and inferring whatever structure underlies it. This book is about the tools and techniques of machine learning that are used in practical data mining for finding, and describing, structural patterns in data. As with any burgeoning new technology that enjoys intense commercial attention, the use of data mining is surrounded by a great deal of hype in the technical— and sometimes the popular—press. Exaggerated reports appear of the secrets that can be uncovered by setting learning algorithms loose on oceans of data. But there is no magic in machine learning, no hidden power, no alchemy. Instead, there is an identifiable body of simple and practical techniques that can often extract useful information from raw data. This book describes these techniques and shows how they work. We interpret machine learning as the acquisition of structural descriptions from examples. The kind of descriptions that are found can be used for prediction, explanation, and understanding. Some data mining applications focus on prediction: They forecast what will happen in new situations from data that describe what happened in the past, often by guessing the classification of new examples. But we are equally—perhaps more—interested in applications where the result of “learning” is an actual description of a structure that can be used to classify examples. This structural description supports explanation and understanding as well as prediction. In our experience, insights gained by the user are of most interest in the majority of practical data mining applications; indeed, this is one of machine learning’s major advantages over classical statistical modeling.

2016-05-12

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除