lim(x→0) (tan(tanx)-sin(sinx))/(tanx-sinx)

本文深入探讨了拉格朗日中值定理的应用,通过等价函数族的概念,详细解释了如何利用该定理求解特定数学问题的方法。文章重点介绍了在x→0处的某邻域内可导的等价函数族,并展示了如何通过拉格朗日中值定理求解函数极限的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

\lim_{x\rightarrow 0}{\frac{\tan{\tan{x}}-\sin{\sin {x}}}{\tan x - \sin {x}}}

约定在x→0处的某邻域内可导的等价函数族g_{n}{\left ( x \right )}

\lim_{x\rightarrow x_{0}}{\frac{g_{1}\left ({g_{1}{\left (x \right )}} \right )-g_{2}\left ( g_{2}\left ( x \right ) \right )}{g_{1}{\left (x \right )} -g_{2}{\left (x \right )}}}

=\lim_{x\rightarrow x_{0}}{\frac{g_{1}\left ({g_{1}{\left (x \right )}} \right )-g_{1}\left ({g_{2}{\left (x \right )}} \right )+g_{1}\left ({g_{2}{\left (x \right )}} \right )-g_{2}\left ( g_{2}\left ( x \right ) \right )}{g_{1}{\left (x \right )} -g_{2}{\left (x \right )}}}

=\lim_{x\rightarrow x_{0}}{\frac{g_{1}\left ({g_{1}{\left (x \right )}} \right )-g_{1}\left ({g_{2}{\left (x \right )}} \right )}{g_{1}{\left (x \right )} -g_{2}{\left (x \right )}}} + \lim_{x\rightarrow x_{0}}{\frac{g_{1}\left ({g_{2}{\left (x \right )}} \right )-g_{2}\left ( g_{2}\left ( x \right ) \right )}{g_{1}{\left (x \right )} -g_{2}{\left (x \right )}}}

根据拉格朗日中值定理,左式=\lim_{x\rightarrow x_{0}}{g{}'_{1}\left ( \xi \right )}\xi介于g_{1}\left ( x \right )g_{2}\left ( x \right )之间,则\xi的极限为g_{1}{\left ( x_{0} \right )}(或g_{2}{\left ( x_{0} \right )},二者相等)

即左式=g_{1}{}'\left ( g_{2}\left ( x_{0} \right ) \right )

右式=\lim_{\Delta \rightarrow 0}{\frac{g_{2}\left ({g_{2}{\left (x \right )+\Delta }} \right )-g_{2}\left ( g_{2}\left ( x \right ) \right )}{\Delta }}=g_{2}{}'\left ( g_{2}\left ( x_{0} \right ) \right )

\lim_{x\rightarrow x_{0}}{\frac{g_{1}\left ({g_{1}{\left (x \right )}} \right )-g_{2}\left ( g_{2}\left ( x \right ) \right )}{g_{1}{\left (x \right )} -g_{2}{\left (x \right )}}}=g_{1}{}'\left ( g_{2}\left ( x_{0} \right ) \right )+g_{2}{}'\left ( g_{2}\left ( x_{0} \right ) \right )

代入原式得\sec ^{2}\left ( \sin 0 \right )+cos\left ( \sin 0 \right )=2

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值